==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER APOPTOSIS 18-DEC-97 1A1Z . COMPND 2 MOLECULE: FADD PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.EBERSTADT,B.HUANG,Z.CHEN,R.P.MEADOWS,C.NG,S.W.FESIK . 83 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5934.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 66 79.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 14.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 49 59.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 222 0, 0.0 5,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 73.8 -7.8 10.6 7.6 2 2 A D > - 0 0 66 1,-0.1 4,-1.7 2,-0.1 5,-0.1 -0.135 360.0-119.0 -58.8 163.2 -8.3 9.5 4.0 3 3 A P H > S+ 0 0 61 0, 0.0 4,-1.7 0, 0.0 5,-0.2 0.926 113.0 54.0 -71.6 -49.0 -10.3 6.4 3.3 4 4 A F H > S+ 0 0 4 1,-0.2 4,-1.5 2,-0.2 5,-0.1 0.813 109.0 53.4 -58.8 -25.3 -7.5 4.5 1.6 5 5 A L H > S+ 0 0 48 2,-0.2 4,-1.4 1,-0.2 -1,-0.2 0.953 102.8 52.9 -75.8 -49.4 -5.5 5.2 4.7 6 6 A V H < S+ 0 0 102 -4,-1.7 4,-0.5 1,-0.3 -2,-0.2 0.854 113.1 47.5 -54.9 -30.3 -8.0 3.8 7.2 7 7 A L H >X S+ 0 0 26 -4,-1.7 4,-1.9 1,-0.2 3,-1.0 0.866 104.7 58.5 -79.1 -35.3 -8.0 0.6 5.1 8 8 A L H 3X S+ 0 0 1 -4,-1.5 4,-1.3 1,-0.2 -2,-0.2 0.738 95.9 65.9 -66.3 -18.8 -4.2 0.6 5.0 9 9 A H H 3< S+ 0 0 139 -4,-1.4 4,-0.4 2,-0.2 -1,-0.2 0.821 107.8 38.5 -73.6 -27.5 -4.2 0.4 8.8 10 10 A S H X> S+ 0 0 81 -3,-1.0 3,-1.2 -4,-0.5 4,-0.8 0.931 118.6 43.7 -87.1 -53.6 -5.9 -3.1 8.7 11 11 A V H >X S+ 0 0 6 -4,-1.9 4,-1.4 1,-0.3 3,-0.7 0.847 103.6 69.9 -61.0 -30.0 -4.0 -4.7 5.8 12 12 A S H 3X S+ 0 0 22 -4,-1.3 4,-1.1 -5,-0.3 -1,-0.3 0.856 94.7 54.4 -57.4 -33.3 -0.8 -3.2 7.2 13 13 A S H <4 S+ 0 0 101 -3,-1.2 -1,-0.2 -4,-0.4 -2,-0.2 0.834 106.0 51.6 -72.3 -28.8 -1.0 -5.7 10.1 14 14 A S H << S+ 0 0 66 -4,-0.8 -1,-0.2 -3,-0.7 -2,-0.2 0.758 99.6 67.2 -79.0 -21.5 -1.3 -8.6 7.7 15 15 A L H >X S+ 0 0 3 -4,-1.4 4,-1.7 3,-0.1 3,-0.6 0.996 72.4 158.6 -61.8 -62.4 1.8 -7.5 5.8 16 16 A S H 3X S- 0 0 85 -4,-1.1 4,-1.8 1,-0.2 5,-0.2 -0.071 71.1 -43.5 64.3-174.5 4.3 -8.1 8.6 17 17 A S H 3> S+ 0 0 92 1,-0.2 4,-1.4 2,-0.2 -1,-0.2 0.733 135.7 69.5 -61.2 -18.0 8.1 -8.5 7.8 18 18 A S H <> S+ 0 0 75 -3,-0.6 4,-1.8 2,-0.2 3,-0.4 0.997 105.2 34.2 -65.1 -61.7 7.0 -10.7 4.9 19 19 A E H X>S+ 0 0 4 -4,-1.7 4,-1.8 1,-0.2 5,-0.5 0.955 116.2 56.2 -59.5 -48.5 5.4 -8.0 2.7 20 20 A L H X5S+ 0 0 48 -4,-1.8 4,-0.9 1,-0.2 -1,-0.2 0.858 106.5 54.0 -53.5 -32.0 8.0 -5.4 3.9 21 21 A T H X5S+ 0 0 88 -4,-1.4 4,-2.0 -3,-0.4 -1,-0.2 0.987 115.0 35.3 -68.1 -57.6 10.7 -7.8 2.6 22 22 A E H X5S+ 0 0 58 -4,-1.8 4,-2.0 1,-0.2 5,-0.4 0.997 120.2 46.4 -60.3 -66.0 9.4 -8.2 -0.9 23 23 A L H X5S+ 0 0 4 -4,-1.8 4,-1.0 1,-0.2 -1,-0.2 0.787 110.2 59.3 -49.4 -26.0 8.1 -4.7 -1.5 24 24 A K H XX S+ 0 0 41 -4,-2.0 3,-1.0 -3,-0.3 4,-0.7 0.972 118.9 43.4 -55.9 -54.4 13.6 -5.2 -2.6 26 26 A L H 3< S+ 0 0 64 -4,-2.0 -1,-0.3 1,-0.2 5,-0.2 0.770 107.0 64.3 -64.2 -21.1 11.4 -4.1 -5.5 27 27 A C H >X>S+ 0 0 0 -4,-1.0 3,-1.8 -5,-0.4 4,-0.8 0.844 87.9 69.0 -72.0 -30.0 11.2 -0.7 -3.8 28 28 A L H <<5S+ 0 0 77 -4,-1.5 5,-0.4 -3,-1.0 -1,-0.2 0.933 110.3 33.1 -54.2 -45.0 14.9 -0.2 -4.4 29 29 A G T 3<5S+ 0 0 74 -4,-0.7 -1,-0.3 -3,-0.2 -2,-0.1 -0.222 133.0 29.8-105.1 45.4 14.3 0.1 -8.1 30 30 A R T <45S+ 0 0 132 -3,-1.8 -3,-0.2 -2,-0.0 -2,-0.2 0.177 124.8 22.9-159.3 -66.7 10.9 1.8 -7.9 31 31 A V T <5S- 0 0 25 -4,-0.8 2,-0.2 -5,-0.2 -3,-0.1 0.965 109.1 -84.1 -80.0 -72.6 10.2 4.0 -4.9 32 32 A G >< - 0 0 20 -5,-0.8 4,-1.6 1,-0.1 5,-0.1 -0.623 13.1-130.2 164.3 134.2 13.6 5.1 -3.6 33 33 A K H > S+ 0 0 144 -5,-0.4 4,-1.6 1,-0.2 -1,-0.1 0.930 110.8 54.1 -66.1 -42.5 16.4 3.7 -1.4 34 34 A R H > S+ 0 0 215 1,-0.2 4,-0.6 2,-0.2 -1,-0.2 0.911 107.7 50.9 -59.3 -39.3 16.5 7.0 0.6 35 35 A K H >> S+ 0 0 75 1,-0.2 4,-1.5 2,-0.2 3,-1.0 0.877 105.8 55.8 -67.4 -34.0 12.8 6.8 1.3 36 36 A L H 3< S+ 0 0 22 -4,-1.6 -1,-0.2 1,-0.2 -2,-0.2 0.843 91.6 72.1 -67.9 -29.7 13.2 3.2 2.5 37 37 A E H 3< S+ 0 0 167 -4,-1.6 -1,-0.2 1,-0.2 -2,-0.2 0.845 108.4 35.1 -55.0 -29.5 15.8 4.4 5.1 38 38 A R H << S+ 0 0 206 -3,-1.0 -1,-0.2 -4,-0.6 -2,-0.2 0.764 95.8 102.0 -95.1 -28.8 12.8 5.9 6.9 39 39 A V < + 0 0 23 -4,-1.5 3,-0.1 1,-0.2 4,-0.0 -0.231 34.1 151.0 -54.2 141.5 10.3 3.2 6.1 40 40 A Q + 0 0 152 1,-0.3 -1,-0.2 0, 0.0 2,-0.1 0.485 60.2 15.8-141.0 -47.3 9.7 0.9 9.1 41 41 A S S > S- 0 0 60 1,-0.1 4,-1.0 -21,-0.0 -1,-0.3 -0.369 89.5 -88.3-117.3-161.1 6.2 -0.6 9.0 42 42 A G H > S+ 0 0 4 1,-0.2 4,-1.9 2,-0.2 5,-0.2 0.912 123.9 53.8 -81.1 -43.3 3.5 -0.9 6.3 43 43 A L H > S+ 0 0 41 1,-0.2 4,-1.3 2,-0.2 -1,-0.2 0.732 102.5 63.7 -64.1 -17.5 1.8 2.5 7.1 44 44 A D H >> S+ 0 0 49 2,-0.2 4,-1.8 1,-0.2 3,-0.5 0.990 106.2 38.2 -71.1 -59.3 5.3 4.1 6.6 45 45 A L H 3X S+ 0 0 12 -4,-1.0 4,-2.0 1,-0.2 5,-0.2 0.886 117.3 53.3 -59.3 -35.8 5.8 3.2 2.9 46 46 A F H 3X S+ 0 0 2 -4,-1.9 4,-1.7 1,-0.2 -1,-0.2 0.829 106.3 53.2 -70.0 -28.2 2.1 3.9 2.4 47 47 A S H S+ 0 0 2 -4,-2.0 4,-0.6 1,-0.3 5,-0.5 0.970 112.7 50.2 -55.8 -53.4 3.7 7.3 -1.6 50 50 A L H <5S+ 0 0 46 -4,-1.7 -1,-0.3 -5,-0.2 -2,-0.2 0.846 102.9 65.9 -55.5 -29.8 0.4 9.0 -0.6 51 51 A E H <5S- 0 0 145 -4,-1.0 -1,-0.2 -3,-0.2 -2,-0.2 0.989 132.8 -36.3 -57.1 -61.1 2.5 12.1 0.1 52 52 A Q H <5S+ 0 0 171 -4,-1.5 -1,-0.2 -3,-0.1 -2,-0.2 -0.482 116.9 64.7-167.8 88.9 3.6 12.6 -3.5 53 53 A N T <5S- 0 0 97 -4,-0.6 -3,-0.1 -3,-0.1 -4,-0.1 0.004 107.7 -36.4-168.9 -71.1 4.3 9.7 -5.9 54 54 A D S S- 0 0 95 -2,-0.2 3,-1.4 3,-0.2 2,-0.8 -0.972 70.6 -61.2-171.2 159.4 -4.6 8.3 -3.4 57 57 A P T 3 S+ 0 0 58 0, 0.0 -2,-0.0 0, 0.0 -55,-0.0 -0.239 130.3 12.9 -49.1 93.4 -8.3 7.6 -3.1 58 58 A G T 3 S+ 0 0 36 -2,-0.8 -3,-0.0 0, 0.0 3,-0.0 0.776 121.4 65.9 104.0 37.0 -8.9 6.3 -6.6 59 59 A H < + 0 0 86 -3,-1.4 3,-0.3 -5,-0.0 -3,-0.2 0.050 49.1 122.1-179.3 50.9 -5.3 5.7 -7.8 60 60 A T > + 0 0 9 -5,-0.2 4,-1.9 1,-0.2 5,-0.2 -0.112 31.4 121.1-113.6 36.8 -3.5 3.0 -5.8 61 61 A E H > S+ 0 0 122 2,-0.2 4,-1.0 1,-0.2 -1,-0.2 0.829 73.4 56.0 -69.2 -28.4 -2.7 0.7 -8.8 62 62 A L H > S+ 0 0 28 -3,-0.3 4,-1.8 -8,-0.3 3,-0.4 0.986 110.5 40.7 -68.2 -57.1 1.0 1.0 -8.0 63 63 A L H > S+ 0 0 0 -9,-0.5 4,-1.9 1,-0.2 3,-0.3 0.972 115.1 51.0 -56.5 -54.8 0.8 -0.2 -4.4 64 64 A R H X S+ 0 0 94 -4,-1.9 4,-1.5 1,-0.2 -1,-0.2 0.823 105.8 60.2 -54.6 -27.2 -1.7 -3.0 -5.2 65 65 A E H X S+ 0 0 109 -4,-1.0 4,-1.5 -3,-0.4 -1,-0.2 0.964 102.7 48.3 -67.3 -49.2 0.7 -4.0 -8.0 66 66 A L H X S+ 0 0 4 -4,-1.8 4,-1.6 -3,-0.3 3,-0.5 0.932 110.1 52.4 -57.7 -43.2 3.6 -4.7 -5.6 67 67 A L H X>S+ 0 0 2 -4,-1.9 5,-1.5 1,-0.3 4,-0.7 0.885 103.9 58.0 -61.7 -33.5 1.3 -6.8 -3.4 68 68 A A H ><5S+ 0 0 56 -4,-1.5 3,-0.6 -5,-0.3 -1,-0.3 0.873 101.4 56.1 -64.6 -32.8 0.3 -8.7 -6.5 69 69 A S H 3<5S+ 0 0 72 -4,-1.5 -1,-0.2 -3,-0.5 -2,-0.2 0.923 101.8 54.4 -66.3 -41.1 4.0 -9.6 -6.9 70 70 A L H 3<5S- 0 0 51 -4,-1.6 -1,-0.2 2,-0.1 -2,-0.2 0.709 109.9-127.9 -66.0 -15.1 4.1 -11.1 -3.4 71 71 A R T <<5 + 0 0 219 -4,-0.7 2,-1.0 -3,-0.6 -3,-0.2 0.821 58.6 147.7 72.9 28.9 1.2 -13.3 -4.5 72 72 A R >< + 0 0 106 -5,-1.5 4,-1.7 1,-0.2 5,-0.2 -0.766 15.4 166.1 -99.8 94.6 -0.8 -12.2 -1.5 73 73 A H H > S+ 0 0 136 -2,-1.0 4,-1.0 1,-0.2 -1,-0.2 0.710 70.8 66.7 -80.8 -18.4 -4.5 -12.2 -2.6 74 74 A D H > S+ 0 0 124 -3,-0.2 4,-0.6 2,-0.2 -1,-0.2 0.907 116.8 23.8 -70.2 -38.0 -5.7 -12.0 1.1 75 75 A L H >> S+ 0 0 6 2,-0.2 4,-1.9 1,-0.1 3,-0.8 0.902 122.0 53.6 -91.0 -51.8 -4.3 -8.5 1.6 76 76 A L H 3X S+ 0 0 21 -4,-1.7 4,-1.9 1,-0.3 5,-0.3 0.823 103.9 61.8 -53.4 -28.1 -4.1 -7.3 -2.0 77 77 A R H 3X S+ 0 0 186 -4,-1.0 4,-1.1 -5,-0.2 -1,-0.3 0.938 103.6 46.5 -66.6 -43.3 -7.8 -8.2 -2.2 78 78 A R H < S+ 0 0 1 -4,-1.9 3,-0.8 1,-0.2 4,-0.4 0.992 117.0 31.6 -57.5 -63.8 -6.6 -3.0 -1.2 80 80 A D H 3< S+ 0 0 67 -4,-1.9 3,-0.5 1,-0.2 -1,-0.2 0.652 113.3 67.6 -70.3 -11.0 -8.4 -3.1 -4.6 81 81 A D H 3< S+ 0 0 111 -4,-1.1 -1,-0.2 -5,-0.3 -2,-0.2 0.833 80.8 73.9 -78.7 -29.8 -11.6 -4.0 -2.7 82 82 A F << 0 0 78 -4,-1.6 -1,-0.2 -3,-0.8 -2,-0.2 0.806 360.0 360.0 -53.6 -25.4 -11.9 -0.6 -1.1 83 83 A E 0 0 163 -3,-0.5 -1,-0.2 -4,-0.4 -2,-0.2 0.630 360.0 360.0-112.1 360.0 -13.0 0.6 -4.6