==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 23-JUN-05 2A2V . COMPND 2 MOLECULE: JINGZHAOTOXIN-XI; . SOURCE 2 ORGANISM_SCIENTIFIC: CHILOBRACHYS JINGZHAO; . AUTHOR Z.LIAO,S.P.LIANG . 34 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2795.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 38.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 233 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 61.3 11.9 5.1 3.6 2 2 A a - 0 0 58 1,-0.1 2,-0.2 13,-0.0 13,-0.1 -0.259 360.0-101.0 -90.2-177.4 8.2 4.0 3.5 3 3 A R - 0 0 94 -2,-0.1 13,-2.3 11,-0.0 2,-0.2 -0.696 32.6-166.4-105.0 159.7 6.3 2.5 0.5 4 4 A K > - 0 0 116 -2,-0.2 3,-1.3 1,-0.2 24,-0.5 -0.574 46.7 -35.4-128.3-167.1 3.8 4.3 -1.8 5 5 A M T 3 S+ 0 0 94 1,-0.3 -1,-0.2 -2,-0.2 24,-0.2 -0.262 131.9 4.8 -54.4 135.4 1.2 3.4 -4.4 6 6 A F T 3 S+ 0 0 178 22,-0.9 -1,-0.3 1,-0.1 23,-0.1 0.903 95.0 128.5 55.2 41.1 2.3 0.3 -6.4 7 7 A G < - 0 0 35 -3,-1.3 -2,-0.1 21,-0.2 -1,-0.1 0.839 64.7-122.5 -94.2 -39.7 5.4 0.0 -4.1 8 8 A G + 0 0 34 -4,-0.3 19,-0.3 2,-0.0 2,-0.2 0.392 41.4 159.5 100.8 122.4 5.1 -3.7 -3.2 9 9 A b - 0 0 10 17,-1.4 3,-0.1 13,-0.1 6,-0.1 -0.857 35.2-141.9-155.5-169.9 4.8 -5.0 0.4 10 10 A S S S+ 0 0 94 1,-0.4 2,-0.3 -2,-0.2 -1,-0.1 0.574 79.6 38.9-133.3 -48.1 3.7 -8.0 2.5 11 11 A V S > S- 0 0 76 1,-0.1 3,-0.7 15,-0.1 -1,-0.4 -0.739 82.9-112.0-108.5 158.6 2.1 -6.8 5.8 12 12 A D G > S+ 0 0 113 1,-0.3 2,-1.1 -2,-0.3 3,-0.6 0.863 115.5 62.6 -56.3 -34.3 -0.3 -3.8 6.3 13 13 A S G 3 S+ 0 0 101 1,-0.2 -1,-0.3 7,-0.1 7,-0.1 -0.216 82.0 85.7 -86.6 48.7 2.5 -2.1 8.3 14 14 A D G < S+ 0 0 72 -2,-1.1 2,-0.3 -3,-0.7 -1,-0.2 0.170 79.6 61.7-131.1 16.4 4.8 -1.9 5.3 15 15 A c S < S- 0 0 23 -3,-0.6 -11,-0.2 4,-0.2 4,-0.1 -0.852 85.4 -91.5-135.8 173.1 3.7 1.3 3.6 16 16 A a > - 0 0 44 -13,-2.3 3,-0.8 -2,-0.3 -1,-0.1 -0.026 67.2 -59.0 -73.4-173.8 3.5 5.1 4.4 17 17 A A T 3 S+ 0 0 58 1,-0.2 -1,-0.2 13,-0.0 3,-0.1 -0.250 124.6 28.8 -64.9 157.9 0.4 6.7 5.9 18 18 A H T 3 S+ 0 0 127 1,-0.2 13,-1.2 13,-0.1 2,-0.3 0.786 104.0 107.1 62.7 25.6 -2.9 6.4 4.0 19 19 A L < - 0 0 26 -3,-0.8 2,-0.3 11,-0.2 -1,-0.2 -0.949 46.9-171.3-133.2 154.3 -1.7 3.1 2.5 20 20 A G - 0 0 27 -2,-0.3 9,-2.8 9,-0.2 2,-0.3 -0.925 28.4-121.8-148.9 120.9 -2.6 -0.6 3.1 21 21 A b B -A 28 0A 15 -2,-0.3 7,-0.3 -9,-0.3 -9,-0.1 -0.435 39.3-116.6 -62.7 118.2 -0.8 -3.7 1.8 22 22 A K - 0 0 66 5,-2.8 5,-0.1 -2,-0.3 -13,-0.1 -0.353 17.1-151.3 -59.5 131.3 -3.4 -5.7 -0.2 23 23 A P S S+ 0 0 121 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.933 97.8 37.6 -70.8 -47.3 -4.1 -9.1 1.4 24 24 A T S S+ 0 0 136 2,-0.0 -2,-0.1 0, 0.0 2,-0.0 0.874 130.2 31.8 -73.1 -34.8 -5.1 -10.8 -1.9 25 25 A L S S- 0 0 90 2,-0.1 -4,-0.0 -15,-0.0 0, 0.0 0.016 86.5-118.5-100.2-150.1 -2.4 -8.8 -3.9 26 26 A K S S+ 0 0 149 -2,-0.0 -17,-1.4 2,-0.0 2,-0.3 -0.164 71.3 82.9-152.7 52.3 1.0 -7.6 -2.7 27 27 A Y S S- 0 0 66 -19,-0.3 -5,-2.8 -7,-0.1 2,-0.8 -0.985 81.6 -91.8-151.4 160.4 1.2 -3.8 -2.9 28 28 A c B -A 21 0A 1 -24,-0.5 2,-0.9 -2,-0.3 -22,-0.9 -0.638 36.8-158.1 -78.7 112.0 0.3 -0.7 -0.8 29 29 A A - 0 0 12 -9,-2.8 -9,-0.2 -2,-0.8 2,-0.1 -0.767 14.3-137.5 -93.1 103.6 -3.2 0.4 -2.0 30 30 A W + 0 0 68 -2,-0.9 -11,-0.2 -11,-0.2 -12,-0.1 -0.380 31.7 167.8 -60.0 126.5 -3.6 4.1 -1.1 31 31 A D + 0 0 82 -13,-1.2 -12,-0.1 -2,-0.1 -1,-0.1 -0.374 22.2 132.8-140.3 60.5 -7.2 4.6 0.3 32 32 A G S S+ 0 0 48 -14,-0.2 -1,-0.1 -15,-0.1 -14,-0.1 0.974 89.3 3.3 -75.7 -55.9 -7.4 8.0 2.0 33 33 A T 0 0 132 -3,-0.1 -2,-0.1 0, 0.0 0, 0.0 0.849 360.0 360.0 -93.8 -83.5 -10.7 9.2 0.4 34 34 A F 0 0 196 -4,-0.0 -3,-0.0 0, 0.0 0, 0.0 0.938 360.0 360.0 46.7 360.0 -12.3 6.4 -1.8