==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER THREE-HELIX BUNDLE 01-APR-99 2A3D . COMPND 2 MOLECULE: PROTEIN (DE NOVO THREE-HELIX BUNDLE); . SOURCE 2 ORGANISM_SCIENTIFIC: SYNTHETIC CONSTRUCT; . AUTHOR S.T.R.WALSH,H.CHENG,J.W.BRYSON,H.RODER,W.F.DEGRADO . 73 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5472.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 66 90.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 18 24.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 44 60.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M > 0 0 148 0, 0.0 4,-1.0 0, 0.0 3,-0.4 0.000 360.0 360.0 360.0-151.8 56.2 9.5 16.9 2 2 A G H > + 0 0 55 1,-0.2 4,-1.3 2,-0.2 3,-0.2 0.809 360.0 69.1 -54.2 -25.0 57.7 11.7 14.2 3 3 A S H >> S+ 0 0 26 1,-0.2 4,-1.3 2,-0.2 3,-0.7 0.985 102.1 39.6 -59.2 -57.8 59.4 8.4 13.0 4 4 A W H 3> S+ 0 0 108 -3,-0.4 4,-1.1 1,-0.2 -1,-0.2 0.661 105.3 73.4 -67.4 -11.0 56.1 6.8 11.8 5 5 A A H 3X S+ 0 0 53 -4,-1.0 4,-0.9 2,-0.2 -1,-0.2 0.929 101.6 38.2 -70.1 -42.5 55.1 10.3 10.5 6 6 A E H X S+ 0 0 50 -4,-1.1 4,-0.9 1,-0.2 3,-0.8 0.817 101.5 63.0 -79.8 -28.4 51.2 7.3 -0.1 13 13 A A H 3X S+ 0 0 39 -4,-1.0 4,-1.3 -3,-0.4 3,-0.3 0.862 102.3 50.5 -64.8 -32.1 53.9 8.3 -2.6 14 14 A I H 3X S+ 0 0 13 -4,-1.4 4,-1.1 1,-0.2 -1,-0.3 0.626 98.7 68.6 -81.0 -10.6 53.8 4.8 -4.1 15 15 A K H <4 S+ 0 0 127 -3,-0.8 -1,-0.2 -4,-0.3 -2,-0.2 0.847 106.0 37.4 -77.0 -31.6 50.0 5.1 -4.5 16 16 A T H >X S+ 0 0 83 -4,-0.9 3,-1.1 -3,-0.3 4,-0.6 0.927 116.0 49.4 -85.3 -49.3 50.2 7.8 -7.2 17 17 A R H >X S+ 0 0 143 -4,-1.3 3,-1.6 1,-0.3 4,-0.9 0.954 113.9 46.4 -56.0 -49.5 53.3 6.6 -9.2 18 18 A L H 3< S+ 0 0 28 -4,-1.1 -1,-0.3 1,-0.3 -2,-0.2 0.640 95.7 78.5 -69.9 -8.4 51.9 3.0 -9.4 19 19 A Q H <4 S+ 0 0 154 -3,-1.1 -1,-0.3 -5,-0.1 -2,-0.2 0.762 104.4 33.0 -71.1 -20.2 48.5 4.5 -10.4 20 20 A A H << + 0 0 67 -3,-1.6 -2,-0.2 -4,-0.6 -3,-0.1 0.861 62.2 162.3 -97.7 -74.6 50.0 5.0 -13.9 21 21 A L < + 0 0 9 -4,-0.9 52,-0.5 1,-0.1 4,-0.2 0.643 41.2 119.6 61.4 12.8 52.5 2.2 -14.8 22 22 A G S S+ 0 0 65 1,-0.2 3,-0.2 2,-0.1 -1,-0.1 0.904 88.3 32.3 -72.8 -35.3 52.1 3.3 -18.4 23 23 A G S > S+ 0 0 44 1,-0.2 2,-1.4 50,-0.1 3,-0.7 0.849 86.3 154.9 -84.1 -36.3 55.8 3.9 -18.3 24 24 A S G >>> + 0 0 13 1,-0.3 3,-2.1 2,-0.2 4,-0.9 -0.164 61.5 62.1 47.1 -82.7 56.3 1.1 -15.8 25 25 A E G 345S+ 0 0 135 -2,-1.4 -1,-0.3 46,-0.5 5,-0.1 0.847 118.0 30.2 -37.9 -44.8 60.0 0.3 -16.7 26 26 A A G <45S+ 0 0 91 -3,-0.7 -1,-0.3 3,-0.1 4,-0.2 0.520 125.3 50.2 -95.6 -5.1 60.9 3.9 -15.6 27 27 A E T X>5S+ 0 0 60 -3,-2.1 4,-0.7 43,-0.1 3,-0.6 0.877 120.2 22.2 -95.5 -73.8 58.1 4.1 -13.0 28 28 A L H 3X5S+ 0 0 3 -4,-0.9 4,-1.2 1,-0.2 -3,-0.1 0.349 103.9 87.2 -81.7 15.3 58.1 1.0 -10.7 29 29 A A H 3> S+ 0 0 54 -3,-0.6 4,-1.0 1,-0.2 -1,-0.2 0.830 103.1 74.7 -67.4 -26.8 62.8 2.6 -8.7 31 31 A F H >X S+ 0 0 11 -4,-0.7 3,-2.5 1,-0.2 4,-1.4 0.960 91.9 52.2 -49.4 -55.5 59.9 1.1 -6.6 32 32 A E H 3X S+ 0 0 101 -4,-1.2 4,-1.4 -3,-0.3 -1,-0.2 0.911 104.1 56.9 -49.8 -42.5 61.9 -2.1 -6.1 33 33 A K H 3X S+ 0 0 168 -4,-0.9 4,-0.9 2,-0.2 -1,-0.3 0.750 107.8 52.6 -63.0 -18.0 64.8 0.0 -4.8 34 34 A E H XX S+ 0 0 83 -3,-2.5 3,-1.3 -4,-1.0 4,-1.0 0.969 103.4 48.0 -81.1 -69.8 62.3 1.3 -2.3 35 35 A I H 3X S+ 0 0 15 -4,-1.4 4,-0.7 1,-0.3 3,-0.4 0.807 108.3 62.4 -43.1 -27.9 60.8 -1.8 -0.6 36 36 A A H >X S+ 0 0 62 -4,-1.4 4,-1.2 -5,-0.3 3,-1.1 0.963 105.3 42.3 -65.8 -47.3 64.5 -2.9 -0.3 37 37 A A H S+ 0 0 88 0, 0.0 4,-1.0 0, 0.0 -2,-0.1 0.892 120.1 57.5 -80.3 -42.6 56.0 -4.5 16.6 52 52 A E T >4 S+ 0 0 106 1,-0.3 3,-0.8 2,-0.2 4,-0.4 0.980 118.9 29.1 -52.4 -66.1 55.2 -0.9 15.8 53 53 A V T >4 S+ 0 0 6 -4,-0.4 3,-0.9 1,-0.2 4,-0.4 0.623 100.1 92.7 -72.7 -7.2 56.5 -1.0 12.2 54 54 A E T >> S+ 0 0 98 1,-0.3 3,-3.2 2,-0.2 4,-0.8 0.943 79.5 57.0 -51.3 -48.0 55.6 -4.8 12.1 55 55 A A H XX S+ 0 0 68 -4,-1.0 4,-1.5 -3,-0.8 3,-0.9 0.877 101.0 58.2 -52.9 -33.8 52.2 -3.9 10.7 56 56 A L H <> S+ 0 0 8 -3,-0.9 4,-1.1 -4,-0.4 -1,-0.3 0.578 95.6 65.9 -74.0 -4.5 54.1 -2.2 7.8 57 57 A R H <4 S+ 0 0 148 -3,-3.2 4,-0.3 -4,-0.4 -1,-0.2 0.756 103.4 43.6 -87.3 -23.8 55.8 -5.5 7.1 58 58 A K H > S+ 0 0 44 -4,-0.3 3,-1.8 1,-0.2 4,-1.2 0.981 101.6 43.2 -63.9 -54.2 54.5 -7.3 1.3 62 62 A A H 3X S+ 0 0 56 -4,-1.2 4,-1.4 -3,-0.3 -1,-0.2 0.750 104.9 68.3 -64.1 -18.9 51.5 -7.0 -1.1 63 63 A I H 3< S+ 0 0 27 -4,-1.2 -1,-0.3 1,-0.1 -2,-0.2 0.696 100.0 49.2 -74.2 -15.6 53.2 -3.8 -2.4 64 64 A R H X S+ 0 0 107 -4,-1.2 3,-2.8 1,-0.2 4,-0.8 0.982 113.9 51.2 -59.4 -56.3 54.0 -8.7 -5.8 66 66 A E H 3X S+ 0 0 109 -4,-1.4 4,-1.1 1,-0.3 3,-0.4 0.804 106.6 58.9 -52.6 -24.2 51.4 -6.3 -7.2 67 67 A L H 3> S+ 0 0 5 -3,-0.3 4,-0.6 -5,-0.2 -1,-0.3 0.705 90.7 69.4 -79.8 -16.6 54.4 -4.2 -8.3 68 68 A Q H << S+ 0 0 142 -3,-2.8 -1,-0.2 -4,-0.7 -2,-0.2 0.807 102.1 45.1 -71.3 -25.6 55.7 -7.2 -10.4 69 69 A A H >< S+ 0 0 39 -4,-0.8 3,-2.2 -3,-0.4 -1,-0.2 0.875 100.1 65.7 -84.8 -38.3 52.7 -6.8 -12.8 70 70 A Y H >< S+ 0 0 55 -4,-1.1 3,-1.2 1,-0.3 -42,-0.2 0.751 80.3 85.0 -55.9 -19.8 53.0 -3.0 -13.2 71 71 A R T 3< S+ 0 0 143 -4,-0.6 -46,-0.5 1,-0.3 -1,-0.3 0.846 113.1 10.7 -53.5 -30.4 56.3 -3.6 -14.9 72 72 A H T < 0 0 132 -3,-2.2 -1,-0.3 -4,-0.1 -2,-0.2 -0.253 360.0 360.0-144.8 53.6 54.4 -4.1 -18.1 73 73 A N < 0 0 141 -3,-1.2 -3,-0.1 -52,-0.5 -2,-0.1 0.097 360.0 360.0-104.7 360.0 50.8 -2.9 -17.5