==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN,METAL BINDING PROTEIN 30-JUN-05 2A51 . COMPND 2 MOLECULE: NUCLEOCAPSID PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR N.MORELLET,H.MEUDAL,S.BOUAZIZ,B.P.ROQUES . 39 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3132.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 30.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 5.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 5.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 148 0, 0.0 9,-1.6 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 98.8 -9.0 1.3 6.7 2 2 A T B -A 9 0A 41 7,-0.2 11,-0.4 8,-0.2 2,-0.4 -0.992 360.0-101.8-150.6 145.8 -6.7 1.5 3.7 3 3 A C > - 0 0 0 5,-2.3 4,-0.7 -2,-0.3 9,-0.1 -0.523 19.3-157.1 -70.4 122.3 -5.8 -0.7 0.7 4 4 A F T 4 S+ 0 0 107 -2,-0.4 31,-0.1 2,-0.1 -1,-0.1 -0.084 89.2 40.8 -88.7 31.2 -2.5 -2.6 1.2 5 5 A N T 4 S+ 0 0 27 3,-0.1 16,-1.8 15,-0.1 29,-0.1 0.442 126.2 19.8-139.5 -71.5 -2.2 -3.0 -2.6 6 6 A C T 4 S- 0 0 19 14,-0.2 -2,-0.1 2,-0.1 16,-0.1 0.669 96.2-126.5 -86.2 -21.7 -3.3 0.1 -4.7 7 7 A G < + 0 0 21 -4,-0.7 -3,-0.1 1,-0.3 13,-0.0 0.653 60.9 137.1 85.1 19.6 -2.9 2.5 -1.7 8 8 A K - 0 0 114 1,-0.1 -5,-2.3 -6,-0.0 3,-0.5 -0.813 48.1-129.6 -97.1 137.6 -6.3 4.0 -1.8 9 9 A P B S+A 2 0A 98 0, 0.0 -7,-0.2 0, 0.0 3,-0.1 -0.202 80.9 58.8 -75.6 172.0 -8.3 4.5 1.5 10 10 A G S S+ 0 0 60 -9,-1.6 2,-0.3 1,-0.2 -8,-0.2 0.411 106.9 39.5 87.8 1.2 -11.9 3.5 2.1 11 11 A H S S- 0 0 46 -3,-0.5 2,-0.3 -10,-0.2 -1,-0.2 -0.881 75.6-110.6-157.0-171.4 -11.2 -0.2 1.4 12 12 A T >> - 0 0 42 -2,-0.3 4,-1.8 -9,-0.1 3,-1.2 -0.914 30.8-112.1-130.4 153.0 -8.8 -3.1 1.9 13 13 A A T 34 S+ 0 0 33 -11,-0.4 -10,-0.1 -2,-0.3 -1,-0.0 0.788 116.5 66.5 -55.0 -30.1 -6.6 -5.1 -0.5 14 14 A R T 34 S+ 0 0 226 1,-0.2 -1,-0.3 3,-0.0 -11,-0.0 0.884 110.3 34.6 -52.9 -45.9 -8.9 -8.1 0.2 15 15 A M T <4 S+ 0 0 149 -3,-1.2 -2,-0.2 2,-0.0 -1,-0.2 0.735 97.8 104.1 -82.5 -31.2 -11.7 -6.2 -1.6 16 16 A C < - 0 0 18 -4,-1.8 -12,-0.0 1,-0.2 -5,-0.0 -0.390 44.4-174.4 -66.6 127.0 -9.4 -4.5 -4.2 17 17 A R + 0 0 217 -2,-0.2 -1,-0.2 2,-0.1 -4,-0.0 0.724 58.5 100.2 -83.8 -29.8 -9.6 -5.9 -7.7 18 18 A Q S S- 0 0 93 1,-0.1 -12,-0.1 0, 0.0 2,-0.1 -0.109 78.0-110.0 -59.2 156.2 -6.7 -3.5 -8.9 19 19 A P - 0 0 108 0, 0.0 -1,-0.1 0, 0.0 -14,-0.1 -0.353 46.8 -77.8 -82.4 165.2 -3.1 -4.7 -9.2 20 20 A R - 0 0 95 1,-0.1 -14,-0.2 -2,-0.1 2,-0.1 -0.145 45.0-108.7 -64.3 159.9 -0.3 -3.6 -6.8 21 21 A Q - 0 0 69 -16,-1.8 -1,-0.1 2,-0.2 -14,-0.1 -0.356 30.3-107.5 -80.0 164.8 1.4 -0.3 -6.9 22 22 A E S S- 0 0 122 -2,-0.1 2,-0.1 -16,-0.1 -1,-0.1 0.941 85.3 -38.6 -54.8 -58.1 5.1 0.2 -8.0 23 23 A G S S+ 0 0 0 10,-0.1 2,-0.8 1,-0.0 11,-0.5 -0.390 109.8 1.6-146.9-143.6 6.4 0.8 -4.5 24 24 A C > + 0 0 2 5,-2.4 4,-1.2 8,-2.0 9,-0.1 -0.488 45.5 173.5 -66.8 102.6 5.6 2.6 -1.3 25 25 A W T 4 S+ 0 0 59 -2,-0.8 -1,-0.2 2,-0.2 8,-0.1 0.704 83.1 56.5 -74.6 -21.8 2.2 4.2 -1.9 26 26 A N T 4 S+ 0 0 58 13,-0.1 -1,-0.1 -3,-0.1 -2,-0.1 0.916 129.9 6.5 -75.0 -50.8 2.4 5.1 1.8 27 27 A C T 4 S- 0 0 73 2,-0.1 -2,-0.2 12,-0.1 -1,-0.1 0.674 99.8-116.4-113.0 -28.2 5.7 7.0 1.7 28 28 A G < + 0 0 59 -4,-1.2 -3,-0.1 1,-0.3 2,-0.0 0.316 59.6 142.8 111.0 -8.9 6.4 7.2 -2.0 29 29 A S - 0 0 37 1,-0.1 -5,-2.4 4,-0.1 -1,-0.3 -0.384 34.2-161.9 -62.1 144.6 9.7 5.3 -2.4 30 30 A K S S+ 0 0 115 -7,-0.2 -1,-0.1 -8,-0.1 -5,-0.0 0.747 86.5 60.5 -94.7 -34.8 9.8 3.3 -5.7 31 31 A E S S+ 0 0 156 -8,-0.1 2,-0.2 -7,-0.1 -1,-0.1 0.910 113.1 35.4 -62.5 -47.0 12.7 1.0 -4.5 32 32 A H S S- 0 0 52 -8,-0.1 -8,-2.0 1,-0.0 2,-0.2 -0.680 78.4-130.2-107.9 165.2 10.6 -0.3 -1.6 33 33 A R > - 0 0 89 -10,-0.3 4,-2.3 -2,-0.2 -9,-0.4 -0.471 32.6-100.1-104.2 170.9 7.0 -1.1 -1.1 34 34 A F T 4 S+ 0 0 44 -11,-0.5 -10,-0.1 1,-0.2 -29,-0.1 0.938 125.4 51.8 -59.7 -47.1 4.5 -0.1 1.7 35 35 A A T 4 S+ 0 0 90 1,-0.2 -1,-0.2 -31,-0.1 -11,-0.0 0.780 113.8 45.7 -58.9 -30.9 4.9 -3.5 3.3 36 36 A Q T 4 S+ 0 0 121 -3,-0.2 -1,-0.2 0, 0.0 -2,-0.2 0.826 93.2 96.1 -78.8 -40.3 8.7 -2.9 3.2 37 37 A C S < S- 0 0 12 -4,-2.3 -11,-0.0 1,-0.1 -4,-0.0 -0.264 75.9-133.5 -59.4 138.0 8.6 0.6 4.6 38 38 A P 0 0 128 0, 0.0 -1,-0.1 0, 0.0 -4,-0.0 0.856 360.0 360.0 -55.3 -38.2 9.1 1.2 8.3 39 39 A K 0 0 184 0, 0.0 -12,-0.1 0, 0.0 -13,-0.1 -0.595 360.0 360.0 -73.8 360.0 6.1 3.5 8.1