==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 19-MAR-98 1A7Y . COMPND 2 MOLECULE: ACTINOMYCIN D; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOMYCES ANTIBIOTICUS; . AUTHOR M.SCHAFER,G.M.SHELDRICK,I.BAHNER,H.LACKNER . 30 6 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2610.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 7 23.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 52 0, 0.0 3,-0.5 0, 0.0 7,-0.2 0.000 360.0 360.0 360.0 163.6 12.3 9.2 10.9 2 2 A X B -A 8 0A 44 6,-2.5 6,-2.5 3,-0.4 26,-0.2 -0.623 360.0 -68.5 88.9-116.5 14.4 10.0 7.8 3 3 A P S S+ 0 0 69 0, 0.0 -1,-0.3 0, 0.0 2,-0.1 0.318 132.4 22.7 -83.0 142.1 13.1 12.4 6.6 4 4 A X 0 0 63 -3,-0.5 -2,-0.0 -2,-0.1 4,-0.0 0.582 360.0 360.0-108.4-166.5 10.8 10.7 5.9 5 5 A X 0 0 175 -4,-0.2 -3,-0.4 -3,-0.1 3,-0.0 0.935 360.0 360.0 55.2 360.0 9.7 7.4 7.4 6 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 7 7 A T 0 0 74 0, 0.0 3,-0.3 0, 0.0 4,-0.2 0.000 360.0 360.0 360.0 164.2 14.5 13.0 11.2 8 8 A X B -A 2 0A 48 -6,-2.5 -6,-2.5 3,-0.4 2,-0.1 -0.501 360.0 -69.8 77.1-121.1 16.8 10.1 11.9 9 9 A P S S+ 0 0 57 0, 0.0 -1,-0.3 0, 0.0 2,-0.1 0.321 131.7 24.1 -85.3 154.4 15.9 9.0 14.5 10 10 A X 0 0 64 -3,-0.3 -8,-0.1 -2,-0.1 -2,-0.0 0.701 360.0 360.0 -93.6-171.6 16.8 11.3 16.1 11 11 A X 0 0 162 -4,-0.2 -3,-0.4 -3,-0.1 17,-0.1 0.943 360.0 360.0 57.7 360.0 17.3 14.8 14.5 12 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 13 1 B T > 0 0 60 0, 0.0 3,-0.5 0, 0.0 7,-0.2 0.000 360.0 360.0 360.0 158.4 11.3 8.2 19.4 14 2 B X B 3 -B 20 0B 75 6,-2.1 6,-2.6 3,-0.4 2,-0.1 -0.665 360.0 -66.5 90.0-115.3 9.6 6.4 22.3 15 3 B P T 3 S+ 0 0 104 0, 0.0 -1,-0.3 0, 0.0 2,-0.1 0.347 132.9 20.3 -79.0 143.8 8.0 8.5 23.7 16 4 B X < 0 0 67 -3,-0.5 4,-0.1 -2,-0.1 0, 0.0 0.638 360.0 360.0-107.1-162.6 10.5 9.8 24.5 17 5 B X 0 0 175 -4,-0.1 -3,-0.4 -3,-0.1 3,-0.0 0.942 360.0 360.0 54.6 360.0 14.1 9.5 23.0 18 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 19 7 B T 0 0 77 0, 0.0 3,-0.3 0, 0.0 4,-0.2 0.000 360.0 360.0 360.0 162.6 6.8 7.5 19.0 20 8 B X B -B 14 0B 80 -6,-2.6 -6,-2.1 3,-0.4 2,-0.1 -0.407 360.0 -73.3 67.2-121.0 8.8 4.4 18.1 21 9 B P S S+ 0 0 46 0, 0.0 -1,-0.3 0, 0.0 2,-0.1 0.280 130.2 32.5 -86.3 157.7 9.7 4.9 15.3 22 10 B X 0 0 66 -3,-0.3 -8,-0.1 -2,-0.1 -2,-0.0 0.633 360.0 360.0 -89.6-176.6 7.2 4.5 14.0 23 11 B X 0 0 172 -4,-0.2 -3,-0.4 -3,-0.1 0, 0.0 0.911 360.0 360.0 58.6 360.0 4.0 5.5 15.8 24 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 25 1 C T 0 0 79 0, 0.0 3,-0.3 0, 0.0 7,-0.2 0.000 360.0 360.0 360.0 157.1 23.1 14.8 2.6 26 2 C X B -C 32 0C 88 6,-2.3 6,-2.6 3,-0.4 2,-0.1 -0.507 360.0 -69.6 78.8-118.3 21.3 11.5 2.7 27 3 C P S S+ 0 0 46 0, 0.0 -1,-0.3 0, 0.0 2,-0.1 0.403 130.0 26.9 -83.8 162.1 18.6 12.0 3.8 28 4 C X 0 0 21 -3,-0.3 4,-0.0 -26,-0.2 -26,-0.0 0.739 360.0 360.0 -83.9-171.3 19.3 12.6 6.6 29 5 C X 0 0 144 -3,-0.1 -3,-0.4 -2,-0.1 3,-0.0 0.945 360.0 360.0 56.2 360.0 22.8 14.0 7.3 30 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 31 7 C T 0 0 71 0, 0.0 3,-0.4 0, 0.0 -5,-0.3 0.000 360.0 360.0 360.0 159.8 19.5 14.8 0.1 32 8 C X B -C 26 0C 83 -6,-2.6 -6,-2.3 3,-0.3 2,-0.1 -0.593 360.0 -68.5 85.3-115.0 22.5 13.1 -1.6 33 9 C P S S+ 0 0 105 0, 0.0 -1,-0.3 0, 0.0 2,-0.1 0.382 132.4 33.3 -77.0 148.4 24.5 15.3 -2.0 34 10 C X 0 0 67 -3,-0.4 -2,-0.1 -2,-0.1 -8,-0.0 0.623 360.0 360.0-104.5-174.6 22.8 16.6 -4.0 35 11 C X 0 0 176 -4,-0.2 -3,-0.3 -3,-0.1 -9,-0.0 0.952 360.0 360.0 54.1 360.0 19.0 16.8 -4.1