==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-MAY-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 14-NOV-11 4A7E . COMPND 2 MOLECULE: INSULIN A CHAIN; . SOURCE 2 ORGANISM_SCIENTIFIC: SUS SCROFA; . AUTHOR A.BURKHARDT,M.WARMER,S.PANNEERSELVAM,A.WAGNER,R.REIMER,H.HOH . 50 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3247.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 33 66.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 4.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 8.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 16.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 17 34.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 59 0, 0.0 4,-3.3 0, 0.0 3,-0.4 0.000 360.0 360.0 360.0-161.3 6.7 -7.4 -25.6 2 2 A I H > + 0 0 7 1,-0.3 4,-2.9 2,-0.2 5,-0.3 0.910 360.0 59.2 -60.3 -37.5 4.0 -7.7 -23.0 3 3 A V H 4 S+ 0 0 17 46,-0.4 -1,-0.3 1,-0.2 4,-0.2 0.921 118.4 29.6 -61.8 -38.4 6.1 -10.1 -20.9 4 4 A E H >> S+ 0 0 49 -3,-0.4 4,-2.5 2,-0.1 3,-1.3 0.972 123.3 46.9 -80.8 -53.7 8.8 -7.5 -20.5 5 5 A Q H 3X S+ 0 0 40 -4,-3.3 4,-1.5 1,-0.3 -3,-0.2 0.712 110.2 52.1 -70.3 -27.5 6.8 -4.3 -20.7 6 6 A a H 3< S+ 0 0 0 -4,-2.9 22,-2.9 -5,-0.3 5,-0.4 0.523 114.2 45.6 -80.6 -8.7 4.0 -5.4 -18.2 7 7 A b H <4 S+ 0 0 38 -3,-1.3 -2,-0.2 -5,-0.3 22,-0.1 0.823 118.5 38.6 -94.7 -44.3 6.7 -6.3 -15.7 8 8 A T H < S+ 0 0 105 -4,-2.5 2,-0.2 20,-0.1 -3,-0.2 0.826 130.7 27.8 -75.9 -32.1 8.9 -3.2 -16.0 9 9 A S S < S- 0 0 68 -4,-1.5 19,-0.5 -5,-0.3 2,-0.2 -0.709 105.2 -85.7-113.4 172.3 5.8 -0.9 -16.3 10 10 A I - 0 0 92 -2,-0.2 17,-0.2 17,-0.2 -3,-0.1 -0.563 46.1-129.4 -79.3 148.9 2.3 -1.6 -14.9 11 11 A a - 0 0 2 15,-2.4 2,-0.3 -5,-0.4 -1,-0.1 -0.044 18.1-152.4 -84.6-174.5 0.1 -3.7 -17.0 12 12 A S > - 0 0 30 13,-0.1 4,-2.1 1,-0.1 5,-0.1 -0.969 29.3-113.1-154.5 168.3 -3.5 -2.9 -18.1 13 13 A L H > S+ 0 0 76 -2,-0.3 4,-2.6 2,-0.2 5,-0.3 0.881 115.1 62.3 -76.1 -36.6 -6.5 -5.0 -19.1 14 14 A Y H > S+ 0 0 180 1,-0.2 4,-1.0 2,-0.2 -1,-0.2 0.944 110.1 42.2 -47.0 -48.5 -6.3 -3.6 -22.7 15 15 A Q H >> S+ 0 0 57 1,-0.2 3,-0.6 2,-0.2 4,-0.5 0.940 112.1 51.4 -70.9 -45.7 -2.9 -5.3 -22.9 16 16 A L H >< S+ 0 0 0 -4,-2.1 3,-1.9 1,-0.2 4,-0.3 0.927 107.6 52.9 -58.1 -43.9 -3.8 -8.6 -21.1 17 17 A E H >< S+ 0 0 87 -4,-2.6 3,-1.3 1,-0.3 -1,-0.2 0.786 96.5 68.1 -67.0 -23.3 -6.8 -9.2 -23.3 18 18 A N H << S+ 0 0 85 -4,-1.0 -1,-0.3 -3,-0.6 -2,-0.2 0.690 100.5 50.5 -67.0 -14.6 -4.6 -8.8 -26.4 19 19 A Y T << S+ 0 0 51 -3,-1.9 28,-2.3 -4,-0.5 -1,-0.2 0.387 85.4 103.4-106.4 3.1 -2.9 -12.0 -25.4 20 20 A c B < A 46 0A 11 -3,-1.3 26,-0.3 -4,-0.3 25,-0.1 -0.570 360.0 360.0 -71.7 146.6 -6.1 -14.0 -24.9 21 21 A N 0 0 146 24,-1.5 -1,-0.1 -2,-0.2 -2,-0.1 -0.327 360.0 360.0 -62.4 360.0 -6.8 -16.4 -27.8 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 129 0, 0.0 3,-0.2 0, 0.0 13,-0.1 0.000 360.0 360.0 360.0 -11.7 -5.0 -7.1 -10.1 24 2 B V + 0 0 16 1,-0.2 2,-1.4 12,-0.1 -13,-0.2 0.768 360.0 71.1 -88.0 -26.9 -4.4 -6.1 -13.7 25 3 B N S S+ 0 0 109 -15,-0.1 2,-0.3 -13,-0.1 -1,-0.2 -0.402 90.6 64.8 -92.8 62.4 -3.2 -2.6 -13.2 26 4 B Q S S- 0 0 76 -2,-1.4 -15,-2.4 -3,-0.2 2,-0.3 -0.938 98.0 -56.4-162.2 177.2 0.2 -3.3 -11.6 27 5 B H - 0 0 100 -2,-0.3 2,-0.5 -17,-0.2 -20,-0.2 -0.549 48.7-169.8 -68.3 129.4 3.6 -4.8 -12.3 28 6 B L + 0 0 8 -22,-2.9 2,-0.3 -19,-0.5 -20,-0.1 -0.869 13.7 169.3-125.3 94.2 3.1 -8.4 -13.4 29 7 B b > - 0 0 48 -2,-0.5 3,-2.0 -22,-0.1 4,-0.2 -0.818 49.6 -26.2-110.6 150.0 6.4 -10.2 -13.5 30 8 B G T >> S- 0 0 45 -2,-0.3 3,-1.3 1,-0.3 4,-1.2 -0.154 132.2 -0.6 54.6-136.6 7.0 -13.9 -13.9 31 9 B S H 3> S+ 0 0 91 1,-0.3 4,-2.1 2,-0.2 -1,-0.3 0.673 125.3 71.6 -59.9 -16.5 4.2 -16.2 -12.7 32 10 B H H <> S+ 0 0 120 -3,-2.0 4,-2.0 2,-0.2 -1,-0.3 0.887 98.7 47.1 -67.2 -40.9 2.2 -13.1 -11.7 33 11 B L H <> S+ 0 0 0 -3,-1.3 4,-3.0 2,-0.2 5,-0.2 0.917 110.7 51.5 -65.5 -42.9 1.6 -12.3 -15.3 34 12 B V H X S+ 0 0 48 -4,-1.2 4,-2.3 1,-0.2 -2,-0.2 0.900 110.2 49.6 -62.7 -40.2 0.6 -15.8 -16.2 35 13 B E H X S+ 0 0 125 -4,-2.1 4,-2.3 2,-0.2 -1,-0.2 0.922 110.3 49.0 -67.8 -38.2 -1.8 -15.8 -13.4 36 14 B A H X S+ 0 0 2 -4,-2.0 4,-2.4 1,-0.2 5,-0.3 0.927 111.7 50.4 -67.1 -39.5 -3.4 -12.5 -14.5 37 15 B L H X S+ 0 0 1 -4,-3.0 4,-2.8 1,-0.2 5,-0.3 0.917 109.7 51.2 -60.5 -42.2 -3.6 -13.8 -18.1 38 16 B Y H X S+ 0 0 152 -4,-2.3 4,-1.5 -5,-0.2 -2,-0.2 0.939 113.9 42.7 -60.2 -46.2 -5.3 -16.9 -16.8 39 17 B L H < S+ 0 0 92 -4,-2.3 -1,-0.2 1,-0.2 -2,-0.2 0.855 119.6 43.4 -68.4 -36.8 -7.9 -14.9 -14.8 40 18 B V H < S+ 0 0 23 -4,-2.4 -2,-0.2 -5,-0.2 -1,-0.2 0.910 116.4 44.4 -76.4 -42.1 -8.6 -12.4 -17.5 41 19 B c H >< S+ 0 0 3 -4,-2.8 3,-1.9 -5,-0.3 4,-0.3 0.732 80.2 173.1 -84.5 -20.5 -8.7 -14.7 -20.4 42 20 B G G >< S- 0 0 46 -4,-1.5 3,-1.5 -5,-0.3 -1,-0.2 -0.203 70.6 -3.5 52.8-135.9 -10.9 -17.4 -18.9 43 21 B E G 3 S+ 0 0 118 1,-0.3 -1,-0.3 2,-0.0 -2,-0.1 0.693 126.8 70.6 -65.5 -17.7 -12.0 -20.1 -21.3 44 22 B R G < S- 0 0 113 -3,-1.9 -1,-0.3 1,-0.1 -2,-0.2 0.859 89.2-157.8 -62.3 -34.6 -10.3 -18.3 -24.2 45 23 B G < - 0 0 24 -3,-1.5 -24,-1.5 -4,-0.3 2,-0.3 -0.309 7.9-126.4 73.3-173.7 -6.9 -19.2 -22.8 46 24 B F B -A 20 0A 56 -26,-0.3 2,-0.4 -2,-0.0 -26,-0.3 -0.951 4.4-110.0-157.6 172.4 -3.9 -17.1 -23.8 47 25 B F - 0 0 85 -28,-2.3 2,-0.5 -2,-0.3 -2,-0.0 -0.962 19.9-162.4-116.8 142.6 -0.4 -17.0 -25.2 48 26 B Y + 0 0 85 -2,-0.4 -2,-0.0 -46,-0.0 -14,-0.0 -0.939 16.4 169.0-125.1 106.6 2.7 -16.2 -23.0 49 27 B T - 0 0 67 -2,-0.5 2,-0.8 1,-0.1 -46,-0.4 -0.760 25.4-152.5-131.0 87.4 5.7 -15.3 -25.1 50 28 B P 0 0 58 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.252 360.0 360.0 -61.5 15.0 8.6 -13.9 -23.2 51 29 B K 0 0 207 -2,-0.8 -2,-0.0 -48,-0.0 -49,-0.0 0.218 360.0 360.0-148.4 360.0 10.0 -11.9 -26.1