==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LEUCINE ZIPPERS 09-JUN-98 2A93 . COMPND 2 MOLECULE: C-MYC-MAX HETERODIMERIC LEUCINE ZIPPER; . SOURCE 2 SYNTHETIC: YES; . AUTHOR P.LAVIGNE,M.P.CRUMP,S.M.GAGNE,R.S.HODGES,C.M.KAY,B.D.SYKES . 64 2 1 0 1 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5767.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 54 84.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 4.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 50 78.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 3 A a 0 0 101 0, 0.0 36,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 127.0 -0.1 22.4 7.6 2 4 A G + 0 0 81 0, 0.0 3,-0.1 0, 0.0 2,-0.1 0.221 360.0 27.1-167.0 -43.9 3.6 23.1 7.3 3 5 A G > + 0 0 40 1,-0.1 4,-2.3 2,-0.1 5,-0.2 -0.503 58.5 152.8-135.4 66.1 5.4 20.3 5.6 4 6 A V H > S+ 0 0 30 1,-0.2 4,-3.1 2,-0.2 5,-0.2 0.844 76.6 59.7 -62.7 -33.2 3.0 18.6 3.3 5 7 A Q H > S+ 0 0 161 2,-0.2 4,-2.0 3,-0.2 -1,-0.2 0.909 107.6 44.6 -61.7 -42.7 5.9 17.5 1.1 6 8 A A H > S+ 0 0 65 2,-0.2 4,-1.4 -3,-0.2 -2,-0.2 0.961 118.2 41.8 -66.5 -52.5 7.5 15.6 4.0 7 9 A E H X S+ 0 0 122 -4,-2.3 4,-1.4 1,-0.2 -2,-0.2 0.871 117.2 49.4 -62.6 -36.9 4.2 14.0 5.1 8 10 A E H X S+ 0 0 46 -4,-3.1 4,-1.8 -5,-0.2 -1,-0.2 0.831 103.0 61.5 -71.2 -32.4 3.3 13.3 1.5 9 11 A Q H X S+ 0 0 140 -4,-2.0 4,-2.4 -5,-0.2 5,-0.2 0.880 105.5 46.9 -61.2 -38.3 6.7 11.8 0.9 10 12 A K H X S+ 0 0 157 -4,-1.4 4,-3.0 1,-0.2 5,-0.2 0.878 107.4 56.2 -71.2 -38.2 6.0 9.1 3.4 11 13 A L H X S+ 0 0 23 -4,-1.4 4,-1.0 2,-0.2 -1,-0.2 0.846 112.3 43.9 -62.0 -33.5 2.6 8.4 2.0 12 14 A I H X S+ 0 0 76 -4,-1.8 4,-1.9 2,-0.2 3,-0.4 0.962 117.0 42.1 -75.5 -55.7 4.2 7.8 -1.4 13 15 A S H X S+ 0 0 61 -4,-2.4 4,-1.8 1,-0.2 -2,-0.2 0.871 112.6 56.4 -59.5 -37.3 7.1 5.7 -0.2 14 16 A E H X S+ 0 0 96 -4,-3.0 4,-1.6 1,-0.2 -1,-0.2 0.863 105.8 51.4 -63.0 -35.8 4.8 3.8 2.1 15 17 A E H X S+ 0 0 23 -4,-1.0 4,-2.1 -3,-0.4 -1,-0.2 0.897 106.3 53.5 -68.3 -40.6 2.6 2.9 -0.8 16 18 A D H X S+ 0 0 73 -4,-1.9 4,-2.1 1,-0.2 -1,-0.2 0.866 105.3 55.5 -62.1 -36.1 5.5 1.6 -2.8 17 19 A L H X S+ 0 0 117 -4,-1.8 4,-1.5 1,-0.2 -1,-0.2 0.924 110.1 44.1 -62.7 -44.9 6.4 -0.7 0.2 18 20 A L H X S+ 0 0 21 -4,-1.6 4,-2.0 1,-0.2 -1,-0.2 0.839 109.2 58.7 -68.7 -33.0 2.9 -2.2 0.2 19 21 A R H X S+ 0 0 117 -4,-2.1 4,-2.0 1,-0.2 5,-0.2 0.917 104.8 49.2 -62.3 -44.0 3.1 -2.5 -3.6 20 22 A K H X S+ 0 0 129 -4,-2.1 4,-1.8 1,-0.2 -1,-0.2 0.882 111.0 50.4 -63.1 -38.4 6.2 -4.7 -3.4 21 23 A R H X S+ 0 0 108 -4,-1.5 4,-2.3 2,-0.2 -1,-0.2 0.840 106.5 56.8 -68.5 -33.2 4.5 -6.9 -0.8 22 24 A R H X S+ 0 0 83 -4,-2.0 4,-1.6 2,-0.2 -2,-0.2 0.966 110.1 41.5 -62.3 -54.3 1.4 -7.2 -3.0 23 25 A E H X S+ 0 0 100 -4,-2.0 4,-1.9 1,-0.2 -1,-0.2 0.854 112.8 57.0 -62.2 -34.5 3.3 -8.6 -6.0 24 26 A Q H X S+ 0 0 111 -4,-1.8 4,-2.0 -5,-0.2 -1,-0.2 0.920 104.8 50.1 -62.9 -44.3 5.3 -10.8 -3.6 25 27 A L H X S+ 0 0 18 -4,-2.3 4,-1.2 1,-0.2 -1,-0.2 0.859 111.2 49.8 -62.6 -35.2 2.2 -12.4 -2.2 26 28 A K H X S+ 0 0 109 -4,-1.6 4,-3.6 1,-0.2 5,-0.4 0.833 109.2 51.7 -72.3 -32.7 1.1 -13.1 -5.8 27 29 A H H X>S+ 0 0 93 -4,-1.9 5,-2.3 3,-0.2 4,-0.6 0.841 106.2 54.4 -72.0 -33.6 4.5 -14.6 -6.6 28 30 A K H <5S+ 0 0 128 -4,-2.0 -1,-0.2 3,-0.2 -2,-0.2 0.845 120.8 31.3 -68.5 -33.6 4.3 -16.9 -3.6 29 31 A L H <5S+ 0 0 74 -4,-1.2 -2,-0.2 -5,-0.2 -3,-0.2 0.870 130.1 36.2 -90.0 -44.7 0.9 -18.2 -4.7 30 32 A E H <5S+ 0 0 136 -4,-3.6 -3,-0.2 -5,-0.2 -2,-0.1 0.990 132.2 25.8 -71.5 -64.3 1.4 -17.9 -8.5 31 33 A Q T <5 0 0 130 -4,-0.6 -3,-0.2 -5,-0.4 -4,-0.1 0.996 360.0 360.0 -63.2 -65.5 5.1 -18.8 -8.7 32 34 A L < 0 0 136 -5,-2.3 0, 0.0 -6,-0.0 0, 0.0 -0.342 360.0 360.0 -83.2 360.0 5.4 -21.0 -5.6 33 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 34 3 B a 0 0 128 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 112.0 -2.3 24.9 1.8 35 4 B G + 0 0 90 2,-0.0 0, 0.0 0, 0.0 0, 0.0 0.028 360.0 48.6-156.8 32.3 -5.1 23.9 -0.6 36 5 B G > + 0 0 16 3,-0.0 4,-1.2 2,-0.0 5,-0.2 0.066 69.4 110.6-164.8 32.8 -4.3 20.3 -1.6 37 6 B M H > S+ 0 0 64 2,-0.2 4,-3.4 3,-0.2 5,-0.3 0.972 87.7 34.6 -77.7 -60.9 -3.6 18.4 1.6 38 7 B R H > S+ 0 0 183 1,-0.2 4,-3.2 2,-0.2 5,-0.2 0.868 117.2 57.5 -62.1 -36.8 -6.7 16.1 1.8 39 8 B R H > S+ 0 0 199 2,-0.2 4,-1.3 1,-0.2 -1,-0.2 0.945 115.9 33.7 -59.4 -50.0 -6.7 15.9 -2.0 40 9 B K H X S+ 0 0 101 -4,-1.2 4,-1.6 2,-0.2 -2,-0.2 0.916 120.3 50.2 -72.3 -44.3 -3.2 14.5 -2.1 41 10 B N H X S+ 0 0 32 -4,-3.4 4,-3.7 1,-0.2 5,-0.2 0.889 107.9 54.5 -61.2 -39.8 -3.5 12.6 1.2 42 11 B D H X S+ 0 0 58 -4,-3.2 4,-3.0 -5,-0.3 5,-0.3 0.891 105.1 53.5 -61.7 -39.3 -6.8 11.0 -0.0 43 12 B T H X S+ 0 0 85 -4,-1.3 4,-1.6 -5,-0.2 -1,-0.2 0.874 116.1 39.2 -63.1 -37.1 -5.0 9.7 -3.1 44 13 B H H X S+ 0 0 22 -4,-1.6 4,-3.1 2,-0.2 -2,-0.2 0.885 115.4 51.5 -79.0 -41.5 -2.4 8.1 -1.0 45 14 B Q H X S+ 0 0 107 -4,-3.7 4,-2.6 2,-0.2 5,-0.4 0.912 111.6 48.0 -61.6 -43.4 -4.9 6.9 1.7 46 15 B Q H X S+ 0 0 126 -4,-3.0 4,-1.8 -5,-0.2 5,-0.2 0.965 116.1 41.9 -62.1 -53.8 -7.1 5.3 -0.9 47 16 B D H X S+ 0 0 64 -4,-1.6 4,-1.8 -5,-0.3 -2,-0.2 0.900 120.4 46.3 -60.5 -41.0 -4.2 3.5 -2.7 48 17 B I H >X S+ 0 0 16 -4,-3.1 4,-2.2 2,-0.2 3,-1.3 1.000 114.1 42.0 -62.8 -74.5 -2.8 2.6 0.7 49 18 B D H 3X S+ 0 0 84 -4,-2.6 4,-1.6 1,-0.3 -1,-0.2 0.774 115.9 54.4 -45.6 -29.8 -5.9 1.4 2.6 50 19 B D H 3X S+ 0 0 96 -4,-1.8 4,-1.5 -5,-0.4 -1,-0.3 0.879 106.3 49.9 -73.9 -38.4 -6.8 -0.4 -0.7 51 20 B L H X S+ 0 0 35 -4,-2.8 4,-2.0 2,-0.2 3,-1.5 0.992 109.3 39.0 -60.9 -63.9 -4.2 -12.2 -0.1 59 28 B E H 3X S+ 0 0 58 -4,-2.5 4,-2.2 1,-0.3 -1,-0.2 0.821 108.7 65.8 -56.6 -31.6 -2.0 -13.6 2.6 60 29 B Q H 3< S+ 0 0 131 -4,-1.4 4,-0.4 -5,-0.3 -1,-0.3 0.838 108.6 38.5 -60.2 -32.6 -5.1 -14.8 4.4 61 30 B Q H XX S+ 0 0 142 -3,-1.5 4,-1.7 -4,-1.1 3,-0.6 0.810 109.9 59.7 -86.5 -33.7 -5.6 -17.2 1.4 62 31 B V H 3< S+ 0 0 28 -4,-2.0 -2,-0.2 1,-0.2 -3,-0.2 0.853 97.7 61.1 -62.4 -34.4 -2.0 -18.0 1.0 63 32 B R T 3< S+ 0 0 226 -4,-2.2 -1,-0.2 1,-0.2 -2,-0.2 0.845 104.1 49.9 -61.2 -33.8 -1.9 -19.3 4.6 64 33 B A T <4 0 0 84 -3,-0.6 -1,-0.2 -4,-0.4 -2,-0.2 0.935 360.0 360.0 -70.6 -47.3 -4.5 -21.9 3.5 65 34 B L < 0 0 165 -4,-1.7 -36,-0.0 0, 0.0 0, 0.0 -0.173 360.0 360.0 -88.1 360.0 -2.6 -23.0 0.4