==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 17-NOV-93 1ABT . COMPND 2 MOLECULE: ALPHA-BUNGAROTOXIN; . SOURCE 2 MOL_ID: 2 . AUTHOR V.J.BASUS,G.SONG,E.HAWROT . 80 2 5 5 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4987.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 56 70.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 18 22.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 25 31.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A I 0 0 44 0, 0.0 2,-1.1 0, 0.0 15,-1.0 0.000 360.0 360.0 360.0 86.4 -1.7 10.5 -4.1 2 2 A V E +A 15 0A 42 13,-0.2 62,-2.4 11,-0.1 61,-1.0 -0.748 360.0 97.7 -96.0 80.1 -4.3 8.8 -6.3 3 3 A a E S-Ab 14 64A 0 -2,-1.1 2,-1.8 11,-0.6 11,-0.5 -0.395 93.7 -28.1-131.5-138.7 -3.4 5.2 -6.1 4 4 A H E S-A 13 0A 27 60,-0.7 7,-0.3 62,-0.3 8,-0.2 -0.240 77.2-173.5 -83.8 56.1 -4.5 2.1 -4.0 5 5 A T E +A 12 0A 0 -2,-1.8 7,-2.4 7,-0.8 38,-0.1 -0.197 28.3 174.7 -70.3 119.8 -5.5 4.4 -1.1 6 6 A T > + 0 0 0 36,-0.9 2,-1.4 5,-0.2 3,-0.6 0.292 45.4 119.0-101.0 11.3 -6.5 2.8 2.1 7 7 A A T 3 S- 0 0 1 1,-0.3 70,-0.2 35,-0.2 -2,-0.1 -0.602 112.9 -32.8 -82.3 86.5 -6.7 6.2 3.9 8 8 A T T 3 S+ 0 0 104 -2,-1.4 -1,-0.3 1,-0.2 -2,-0.1 0.818 130.0 98.5 62.2 43.4 -10.5 5.8 4.7 9 9 A S S < S- 0 0 14 -3,-0.6 2,-1.4 -5,-0.1 69,-0.2 -0.987 80.8-120.0-155.7 130.1 -10.9 3.8 1.4 10 10 A P S S- 0 0 94 0, 0.0 -4,-0.1 0, 0.0 -5,-0.1 -0.726 89.8 -53.9 -74.9 82.1 -11.1 0.1 0.4 11 11 A I S S+ 0 0 57 -2,-1.4 2,-0.3 -7,-0.3 -6,-0.2 0.812 101.6 156.9 51.9 48.8 -8.0 0.1 -1.9 12 12 A S E -A 5 0A 37 -7,-2.4 2,-1.5 -8,-0.2 -7,-0.8 -0.786 56.8-103.3-113.6 144.0 -9.6 3.0 -3.8 13 13 A A E +A 4 0A 53 -2,-0.3 2,-0.4 -9,-0.2 -9,-0.1 -0.544 65.2 144.6 -68.9 81.6 -8.2 5.8 -6.0 14 14 A V E -A 3 0A 51 -2,-1.5 2,-1.1 -11,-0.5 -11,-0.6 -0.999 57.3-123.0-123.2 127.9 -8.4 8.7 -3.4 15 15 A T E -A 2 0A 90 -2,-0.4 -13,-0.2 -13,-0.2 -2,-0.0 -0.668 43.9-131.8 -69.7 94.4 -5.9 11.5 -3.1 16 16 A b - 0 0 15 -2,-1.1 -8,-0.1 -15,-1.0 -1,-0.1 -0.459 21.4-159.8 -61.5 116.2 -5.1 10.8 0.6 17 17 A P S S+ 0 0 120 0, 0.0 2,-0.7 0, 0.0 -1,-0.1 0.847 85.8 70.7 -59.1 -36.2 -5.1 13.7 3.1 18 18 A P S S+ 0 0 41 0, 0.0 26,-0.3 0, 0.0 2,-0.2 -0.797 97.9 16.2 -82.9 109.5 -2.9 11.5 5.3 19 19 A G S S- 0 0 32 -2,-0.7 26,-0.3 24,-0.1 2,-0.2 -0.541 70.1 -87.9 132.8-174.3 0.5 11.2 3.8 20 20 A E - 0 0 109 24,-0.8 2,-1.5 2,-0.2 25,-0.1 -0.527 61.6 -46.7-119.3-163.5 3.1 12.4 1.3 21 21 A N S S+ 0 0 103 -2,-0.2 2,-0.4 23,-0.1 25,-0.2 0.061 101.1 78.0 -65.7 13.9 4.5 12.2 -2.3 22 22 A L B -C 45 0B 25 23,-1.9 23,-1.9 -2,-1.5 2,-0.6 -0.996 67.3-135.2-129.0 148.0 4.5 8.3 -2.7 23 23 A a B -D 60 0C 0 37,-3.1 37,-2.5 -2,-0.4 21,-0.1 -0.813 30.0-143.1 -96.1 115.6 2.1 5.5 -3.3 24 24 A Y + 0 0 1 -2,-0.6 34,-0.2 19,-0.4 3,-0.2 0.801 33.1 170.3 -18.6 -84.8 2.7 2.6 -1.0 25 25 A R + 0 0 11 41,-0.5 33,-1.8 32,-0.2 2,-1.1 0.885 25.1 176.6 -2.2 82.6 2.4 -1.0 -1.9 26 26 A K E +EF 41 57D 62 15,-1.6 15,-2.9 31,-0.2 2,-0.4 -0.778 12.6 166.7 -93.7 90.3 4.0 -1.9 1.5 27 27 A M E +EF 40 56D 0 29,-3.0 29,-1.9 -2,-1.1 13,-0.2 -0.900 12.3 139.8-115.3 140.1 3.8 -5.7 1.3 28 28 A W + 0 0 84 11,-2.3 4,-0.1 -2,-0.4 11,-0.1 -0.677 44.1 49.4-146.3-156.6 5.4 -8.5 3.4 29 29 A c - 0 0 36 -2,-0.2 10,-3.0 9,-0.2 -1,-0.2 0.177 46.5-163.9 -25.3 116.4 4.1 -11.9 4.8 30 30 A D S > S+ 0 0 52 8,-0.4 3,-2.5 1,-0.1 8,-0.2 -0.113 90.5 22.8 72.4 87.7 2.6 -13.9 2.8 31 31 A A G > >S- 0 0 43 1,-0.3 3,-2.4 6,-0.3 5,-1.2 0.490 119.2 -97.1 60.1 18.6 0.8 -16.5 4.9 32 32 A F G 3 5 - 0 0 78 5,-2.0 3,-0.3 1,-0.3 -1,-0.3 0.901 65.7 -84.2 23.1 43.7 1.2 -13.6 7.4 33 33 A c G < 5S+ 0 0 97 -3,-2.5 -1,-0.3 4,-0.3 -2,-0.2 0.603 121.3 38.3 26.4 51.8 3.9 -16.1 8.0 34 34 A S T < 5S+ 0 0 83 -3,-2.4 2,-0.3 3,-0.1 -1,-0.2 -0.162 123.4 8.9-166.7 -90.9 1.7 -18.2 10.2 35 35 A S T 5S- 0 0 91 -3,-0.3 -3,-0.2 1,-0.1 -4,-0.1 -0.418 110.3 -73.5-120.6 43.3 -2.0 -18.9 9.5 36 36 A R S