==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 10-FEB-97 1ACW . COMPND 2 MOLECULE: NATURAL SCORPION PEPTIDE P01; . SOURCE 2 ORGANISM_SCIENTIFIC: ANDROCTONUS MAURETANICUS MAURETANICUS; . AUTHOR E.BLANC,V.FREMONT,P.SIZUN,S.MEUNIER,J.VAN RIETSCHOTEN, . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2425.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 69.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 17.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 17.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 85 0, 0.0 2,-0.2 0, 0.0 21,-0.1 0.000 360.0 360.0 360.0 149.6 1.8 0.2 -1.7 2 2 A S - 0 0 50 1,-0.1 0, 0.0 20,-0.1 0, 0.0 -0.497 360.0-159.9 -78.6 150.2 5.6 -0.1 -1.8 3 3 A a S S+ 0 0 71 -2,-0.2 16,-0.1 3,-0.1 -1,-0.1 0.013 89.2 37.9-116.6 27.0 7.8 3.1 -2.0 4 4 A E S > S+ 0 0 151 3,-0.0 4,-1.9 0, 0.0 5,-0.1 0.485 117.4 40.3-139.4 -50.6 10.9 1.2 -3.3 5 5 A D H > S+ 0 0 81 2,-0.2 4,-2.9 3,-0.2 5,-0.3 0.870 114.2 56.4 -74.3 -34.7 9.8 -1.5 -5.8 6 6 A b H > S+ 0 0 37 1,-0.2 4,-1.1 2,-0.2 -1,-0.2 0.969 116.8 33.8 -60.1 -53.1 7.2 0.8 -7.3 7 7 A P H > S+ 0 0 16 0, 0.0 4,-1.9 0, 0.0 -1,-0.2 0.814 117.2 56.6 -72.7 -31.4 9.7 3.5 -8.1 8 8 A E H X S+ 0 0 88 -4,-1.9 4,-1.1 2,-0.2 3,-0.2 0.971 109.6 43.7 -65.6 -50.1 12.5 0.9 -8.8 9 9 A H H < S+ 0 0 107 -4,-2.9 4,-0.4 1,-0.2 -1,-0.2 0.828 113.4 53.7 -64.6 -25.9 10.3 -0.8 -11.5 10 10 A c H ><>S+ 0 0 10 -4,-1.1 5,-2.8 -5,-0.3 3,-1.0 0.841 98.5 62.8 -76.4 -30.0 9.5 2.7 -12.7 11 11 A S H ><5S+ 0 0 74 -4,-1.9 3,-2.4 3,-0.2 -1,-0.2 0.843 83.8 80.4 -62.4 -29.9 13.2 3.4 -13.0 12 12 A T T 3<5S+ 0 0 114 -4,-1.1 -1,-0.2 1,-0.3 -2,-0.2 0.888 106.8 26.9 -43.1 -47.2 13.4 0.6 -15.6 13 13 A Q T < 5S- 0 0 102 -3,-1.0 16,-0.9 -4,-0.4 -1,-0.3 -0.229 125.7 -91.6-112.2 44.5 12.0 3.1 -18.2 14 14 A K T < 5S+ 0 0 159 -3,-2.4 -3,-0.2 1,-0.2 2,-0.2 0.852 86.9 141.5 52.3 33.0 13.3 6.3 -16.6 15 15 A A < - 0 0 7 -5,-2.8 2,-0.4 -7,-0.1 -1,-0.2 -0.648 43.1-143.1-102.2 161.5 10.0 6.5 -14.8 16 16 A Q E -A 27 0A 106 11,-2.0 11,-2.3 -2,-0.2 2,-0.6 -0.984 1.9-154.4-129.5 133.4 9.3 7.7 -11.2 17 17 A A E -A 26 0A 4 -2,-0.4 2,-1.0 9,-0.3 9,-0.3 -0.896 9.3-153.8-108.0 112.8 6.8 6.3 -8.7 18 18 A K E -A 25 0A 127 7,-2.1 7,-1.3 -2,-0.6 2,-0.8 -0.726 8.1-161.3 -88.0 104.2 5.7 8.8 -6.0 19 19 A a E +A 24 0A 34 -2,-1.0 2,-0.3 5,-0.3 5,-0.3 -0.741 27.8 150.5 -87.0 111.5 4.6 6.7 -3.0 20 20 A D E > -A 23 0A 86 3,-2.0 3,-1.0 -2,-0.8 -2,-0.0 -0.993 64.1 -2.3-145.1 135.6 2.4 9.0 -0.8 21 21 A N T 3 S- 0 0 139 -2,-0.3 -1,-0.1 1,-0.3 3,-0.1 0.896 132.5 -55.1 53.8 38.5 -0.5 8.3 1.6 22 22 A D T 3 S+ 0 0 115 1,-0.2 2,-0.5 -21,-0.1 -1,-0.3 0.838 117.2 120.3 64.9 30.7 -0.1 4.6 0.6 23 23 A K E < -A 20 0A 124 -3,-1.0 -3,-2.0 -22,-0.1 2,-0.5 -0.889 49.2-159.9-131.2 105.3 -0.5 5.7 -3.1 24 24 A b E -A 19 0A 31 -2,-0.5 2,-0.8 -5,-0.3 -5,-0.3 -0.709 4.6-164.0 -84.8 123.5 2.3 4.9 -5.6 25 25 A V E -A 18 0A 88 -7,-1.3 -7,-2.1 -2,-0.5 2,-0.4 -0.805 5.3-161.7-110.7 93.0 2.1 7.2 -8.7 26 26 A c E -A 17 0A 62 -2,-0.8 -9,-0.3 -9,-0.3 -2,-0.0 -0.580 6.1-170.4 -75.3 127.3 4.3 5.6 -11.4 27 27 A E E -A 16 0A 134 -11,-2.3 -11,-2.0 -2,-0.4 2,-0.1 -0.900 3.5-165.3-125.4 103.7 5.1 8.2 -14.1 28 28 A P 0 0 78 0, 0.0 -14,-0.1 0, 0.0 -13,-0.1 -0.325 360.0 360.0 -80.1 163.8 6.9 6.9 -17.3 29 29 A I 0 0 145 -16,-0.9 -14,-0.1 -2,-0.1 -2,-0.0 -0.727 360.0 360.0 -83.9 360.0 8.6 9.0 -19.9