==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIFUNGAL PROTEIN 11-NOV-94 1AFP . COMPND 2 MOLECULE: ANTIFUNGAL PROTEIN FROM ASPERGILLUS GIGANTEUS; . SOURCE 2 ORGANISM_SCIENTIFIC: ASPERGILLUS GIGANTEUS; . AUTHOR R.CAMPOS-OLIVAS,M.BRUIX,J.SANTORO,J.LACADENA,A.M.DEL POZO, . 51 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3744.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 51.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 27.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 9.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 81 0, 0.0 18,-0.1 0, 0.0 41,-0.1 0.000 360.0 360.0 360.0 14.7 3.7 -11.0 7.2 2 2 A T - 0 0 39 41,-0.1 41,-0.2 1,-0.1 2,-0.1 -0.335 360.0-148.8 -64.1 143.0 2.6 -7.4 6.6 3 3 A Y - 0 0 45 39,-0.9 2,-0.3 -2,-0.0 -1,-0.1 -0.121 3.7-130.6 -97.8-163.8 4.9 -5.3 4.5 4 4 A N + 0 0 87 13,-0.3 13,-0.6 37,-0.2 37,-0.2 -0.977 41.0 114.2-155.6 141.3 5.6 -1.6 4.5 5 5 A G E -AB 16 40A 18 35,-2.1 35,-0.6 -2,-0.3 2,-0.3 -0.648 54.0 -72.1-166.8-135.1 5.8 1.1 1.8 6 6 A K E -AB 15 39A 123 9,-3.5 9,-3.0 33,-0.3 2,-0.3 -0.963 27.2-151.8-147.0 160.0 4.0 4.3 0.8 7 7 A C E -AB 14 38A 0 31,-2.0 31,-0.8 28,-0.3 30,-0.8 -0.951 11.9-135.5-134.9 153.4 0.7 5.3 -0.8 8 8 A Y E > -A 13 0A 50 5,-2.5 5,-1.7 -2,-0.3 25,-0.5 -0.930 5.0-162.0-114.8 134.4 -0.3 8.3 -2.9 9 9 A K T 5S+ 0 0 103 -2,-0.4 24,-0.2 3,-0.2 -1,-0.1 0.927 95.7 50.3 -75.4 -48.4 -3.5 10.3 -2.4 10 10 A K T 5S+ 0 0 183 1,-0.3 -1,-0.1 2,-0.1 -2,-0.0 0.922 125.8 29.0 -54.8 -47.9 -3.5 11.8 -5.9 11 11 A D T 5S- 0 0 102 2,-0.1 -1,-0.3 16,-0.0 -2,-0.2 0.488 100.9-144.6 -89.8 -6.1 -3.0 8.4 -7.4 12 12 A N T 5 + 0 0 44 1,-0.2 16,-2.1 15,-0.1 2,-0.3 0.903 55.7 124.2 38.7 61.1 -4.8 6.9 -4.4 13 13 A I E < -AC 8 27A 27 -5,-1.7 -5,-2.5 14,-0.3 2,-0.5 -0.925 60.6-128.8-142.9 165.3 -2.6 3.9 -4.5 14 14 A C E -AC 7 26A 0 12,-1.5 12,-1.8 -2,-0.3 2,-0.4 -0.956 23.8-171.3-123.5 110.8 -0.3 2.0 -2.2 15 15 A K E +A 6 0A 69 -9,-3.0 -9,-3.5 -2,-0.5 2,-0.3 -0.860 19.4 144.2-104.7 135.5 3.2 1.3 -3.5 16 16 A Y E -A 5 0A 20 -2,-0.4 2,-0.8 -11,-0.2 -11,-0.2 -0.979 52.8 -98.0-164.2 157.2 5.6 -1.0 -1.6 17 17 A K - 0 0 164 -13,-0.6 -13,-0.3 -2,-0.3 7,-0.1 -0.743 45.1-130.2 -86.0 109.3 8.3 -3.6 -2.1 18 18 A A > - 0 0 8 -2,-0.8 3,-1.3 5,-0.4 -1,-0.0 -0.041 28.7-100.4 -52.3 160.3 6.7 -7.0 -1.9 19 19 A Q T 3 S+ 0 0 145 1,-0.3 -1,-0.1 -18,-0.1 -2,-0.1 0.712 129.9 22.2 -57.1 -20.2 8.4 -9.5 0.4 20 20 A S T 3 S- 0 0 96 0, 0.0 -1,-0.3 0, 0.0 -2,-0.1 0.135 116.4-105.5-131.4 14.5 9.8 -10.9 -2.8 21 21 A G S < S+ 0 0 24 -3,-1.3 -2,-0.1 1,-0.0 -3,-0.1 0.511 95.2 113.1 71.0 4.2 9.5 -7.8 -4.9 22 22 A K + 0 0 177 -5,-0.1 -1,-0.0 2,-0.1 -5,-0.0 0.995 63.0 57.1 -68.2 -66.8 6.6 -9.7 -6.6 23 23 A T + 0 0 38 1,-0.1 -5,-0.4 -6,-0.0 2,-0.3 0.256 66.1 160.7 -51.3-173.0 3.8 -7.4 -5.4 24 24 A A + 0 0 43 1,-0.2 -1,-0.1 -7,-0.1 -10,-0.1 -0.895 43.2 11.9-179.1-153.8 3.7 -3.7 -6.2 25 25 A I - 0 0 102 -2,-0.3 2,-0.3 -10,-0.1 -10,-0.3 -0.071 58.6-171.8 -43.7 141.5 1.4 -0.7 -6.4 26 26 A C E -C 14 0A 19 -12,-1.8 -12,-1.5 -3,-0.1 3,-0.1 -0.884 30.0-109.0-146.9 109.0 -2.0 -1.5 -4.9 27 27 A K E -C 13 0A 142 -2,-0.3 2,-2.4 -14,-0.3 -14,-0.3 0.058 39.4-105.3 -34.0 140.8 -4.9 0.9 -5.2 28 28 A C - 0 0 2 -16,-2.1 2,-0.4 -20,-0.2 -1,-0.2 -0.512 42.5-157.8 -76.5 77.3 -5.6 2.6 -1.8 29 29 A Y - 0 0 150 -2,-2.4 20,-0.3 -3,-0.1 22,-0.2 -0.446 60.4 -7.0 -62.7 114.4 -8.7 0.5 -1.2 30 30 A V S S+ 0 0 95 -2,-0.4 21,-0.2 21,-0.1 19,-0.0 0.375 126.6 36.6 74.5 146.9 -10.8 2.4 1.2 31 31 A K S S- 0 0 176 20,-0.1 20,-0.1 19,-0.1 -2,-0.0 0.923 95.2-125.2 39.4 74.7 -9.7 5.6 3.0 32 32 A K - 0 0 120 1,-0.1 -23,-0.2 2,-0.1 -3,-0.1 0.094 41.7 -69.2 -40.7 160.2 -7.8 6.9 0.1 33 33 A C - 0 0 5 -25,-0.5 3,-0.2 -24,-0.2 -1,-0.1 -0.240 39.2-141.5 -56.6 144.3 -4.1 7.8 0.7 34 34 A P S S- 0 0 82 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 0.906 75.9 -20.2 -75.0 -45.0 -3.7 10.8 3.0 35 35 A R S > S- 0 0 184 -28,-0.2 3,-3.2 -26,-0.1 -28,-0.3 -0.908 83.7 -78.0-167.5 137.8 -0.7 12.2 1.2 36 36 A D T 3 S+ 0 0 105 -2,-0.3 -28,-0.2 1,-0.3 3,-0.1 -0.026 121.4 29.0 -37.3 132.0 1.9 11.0 -1.2 37 37 A G T 3 S+ 0 0 18 -30,-0.8 -1,-0.3 1,-0.3 -29,-0.2 0.102 81.9 155.1 97.4 -19.9 4.5 9.0 0.8 38 38 A A E < -B 7 0A 11 -3,-3.2 -31,-2.0 -31,-0.8 -1,-0.3 -0.174 48.0-118.7 -44.4 118.1 2.0 8.1 3.3 39 39 A K E +B 6 0A 121 -33,-0.3 2,-0.3 -3,-0.1 -33,-0.3 -0.293 42.1 170.6 -62.7 147.0 3.3 4.9 4.9 40 40 A C E -B 5 0A 0 -35,-0.6 -35,-2.1 -25,-0.2 2,-0.3 -0.980 23.4-136.7-157.5 153.2 1.2 1.8 4.4 41 41 A E B -D 50 0B 58 9,-1.4 9,-1.1 -2,-0.3 2,-0.8 -0.863 13.8-132.6-116.8 150.9 1.4 -1.9 5.0 42 42 A F - 0 0 31 -2,-0.3 -39,-0.9 7,-0.2 2,-0.2 -0.856 20.8-142.9-106.4 99.4 0.3 -4.8 2.8 43 43 A D >> - 0 0 7 -2,-0.8 4,-0.8 -41,-0.2 3,-0.6 -0.431 5.2-158.8 -62.3 122.3 -1.6 -7.4 4.9 44 44 A S T 34 S+ 0 0 54 -2,-0.2 -1,-0.2 1,-0.2 -42,-0.0 0.048 84.8 69.5 -90.8 24.7 -0.7 -10.8 3.6 45 45 A Y T 34 S- 0 0 136 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.613 123.5 -2.1-111.6 -24.2 -3.8 -12.2 5.1 46 46 A K T <4 S- 0 0 147 -3,-0.6 -2,-0.1 2,-0.0 -4,-0.0 0.553 91.3-115.0-131.9 -51.7 -6.3 -10.5 2.8 47 47 A G < + 0 0 34 -4,-0.8 -3,-0.1 -21,-0.0 -5,-0.0 0.610 63.7 139.2 113.9 25.1 -4.5 -8.3 0.3 48 48 A K - 0 0 80 -5,-0.2 -18,-0.1 -20,-0.0 -20,-0.0 0.349 55.2-117.1 -74.2-148.9 -5.7 -4.9 1.4 49 49 A C - 0 0 6 -20,-0.3 2,-0.5 -7,-0.1 -7,-0.2 -0.421 17.6-146.5-159.2 70.9 -3.6 -1.8 1.6 50 50 A Y B D 41 0B 127 -9,-1.1 -9,-1.4 1,-0.2 -20,-0.1 -0.197 360.0 360.0 -45.9 95.1 -3.4 -0.5 5.2 51 51 A C 0 0 46 -2,-0.5 -1,-0.2 -22,-0.2 -44,-0.1 0.511 360.0 360.0-130.1 360.0 -3.2 3.2 4.3