==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 29-JUL-05 2AI5 . COMPND 2 MOLECULE: CYTOCHROME C-552; . SOURCE 2 ORGANISM_SCIENTIFIC: HYDROGENOBACTER THERMOPHILUS; . AUTHOR S.NAKAMURA,S.I.ICHIKI,H.TAKASHIMA,S.UCHIYAMA,J.HASEGAWA, . 80 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5592.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 52 65.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 5.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 31 38.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A N 0 0 143 0, 0.0 2,-3.5 0, 0.0 70,-0.0 0.000 360.0 360.0 360.0 156.2 7.5 -11.9 -5.1 2 2 A E >> + 0 0 116 1,-0.2 4,-1.1 4,-0.0 3,-0.7 -0.287 360.0 71.9 68.2 -67.5 7.8 -8.8 -7.2 3 3 A Q H 3> S+ 0 0 147 -2,-3.5 4,-1.7 1,-0.2 -1,-0.2 0.791 88.6 67.7 -50.3 -23.4 6.2 -10.5 -10.3 4 4 A L H 3> S+ 0 0 61 1,-0.2 4,-1.4 2,-0.2 5,-0.2 0.980 92.2 54.1 -63.3 -54.5 3.0 -10.3 -8.2 5 5 A A H <>>S+ 0 0 3 -3,-0.7 4,-3.8 1,-0.2 5,-1.4 0.841 106.1 58.0 -49.9 -30.4 2.7 -6.5 -8.4 6 6 A K H <5S+ 0 0 156 -4,-1.1 -1,-0.2 2,-0.2 -2,-0.2 0.984 99.2 53.1 -66.3 -55.9 3.0 -7.0 -12.2 7 7 A Q H <5S+ 0 0 163 -4,-1.7 -1,-0.2 1,-0.2 -2,-0.2 0.806 120.7 37.5 -50.7 -25.3 -0.1 -9.3 -12.6 8 8 A K H <5S- 0 0 58 -4,-1.4 -2,-0.2 54,-0.0 -1,-0.2 0.876 101.4-133.8 -94.0 -46.3 -1.9 -6.5 -10.7 9 9 A G T ><5 + 0 0 41 -4,-3.8 3,-0.7 -5,-0.2 -3,-0.2 0.802 53.6 143.2 96.3 34.6 -0.3 -3.4 -12.2 10 10 A C G >>< + 0 0 22 -5,-1.4 3,-2.1 1,-0.2 4,-2.1 0.821 60.0 74.1 -76.7 -28.9 0.3 -1.5 -8.9 11 11 A M G 34 + 0 0 72 -6,-0.4 -1,-0.2 1,-0.3 11,-0.1 0.724 69.2 93.5 -57.6 -15.7 3.6 -0.1 -10.2 12 12 A A G <4 S- 0 0 78 -3,-0.7 -1,-0.3 1,-0.2 9,-0.3 0.801 115.8 -2.7 -49.3 -24.8 1.4 2.2 -12.4 13 13 A C T <4 S+ 0 0 34 -3,-2.1 9,-2.4 8,-0.1 7,-0.5 0.541 123.6 75.7-136.4 -37.1 1.8 4.7 -9.5 14 14 A H < + 0 0 28 -4,-2.1 10,-0.2 7,-0.2 2,-0.2 -0.075 54.3 179.5 -71.5-179.7 3.8 3.0 -6.7 15 15 A D > - 0 0 45 8,-0.4 3,-0.9 1,-0.2 11,-0.5 -0.679 35.8-125.6 176.6 125.5 7.6 2.5 -6.9 16 16 A L T 3 S- 0 0 42 1,-0.3 10,-0.8 8,-0.2 11,-0.5 0.944 110.2 -3.4 -42.7 -67.3 10.3 1.0 -4.7 17 17 A K T 3 S+ 0 0 148 9,-0.1 2,-0.3 1,-0.1 -1,-0.3 -0.185 117.8 90.5-122.0 42.4 12.5 4.1 -4.7 18 18 A A < - 0 0 35 -3,-0.9 2,-1.8 4,-0.1 4,-0.2 -0.703 64.9-148.7-139.0 87.4 10.5 6.3 -7.1 19 19 A K + 0 0 180 -2,-0.3 -5,-0.1 5,-0.1 -3,-0.1 -0.268 44.1 151.4 -55.5 85.4 7.9 8.6 -5.4 20 20 A K - 0 0 143 -2,-1.8 -7,-0.1 2,-0.8 4,-0.1 0.145 68.5 -38.4 -96.6-143.5 5.5 8.5 -8.5 21 21 A V S S+ 0 0 92 -9,-0.3 -7,-0.2 -7,-0.2 -8,-0.1 0.851 134.9 37.8 -52.0 -31.4 1.7 8.8 -8.6 22 22 A G S S- 0 0 9 -9,-2.4 -2,-0.8 -4,-0.2 2,-0.2 -0.837 106.6 -82.7-121.0 161.0 1.7 6.8 -5.4 23 23 A P - 0 0 31 0, 0.0 -8,-0.4 0, 0.0 5,-0.1 -0.399 58.4-101.2 -60.9 120.1 4.0 6.6 -2.3 24 24 A A >> - 0 0 1 -2,-0.2 4,-2.1 -10,-0.2 3,-0.6 -0.128 27.2-125.6 -43.5 130.2 7.0 4.4 -3.2 25 25 A Y H 3> S+ 0 0 14 1,-0.3 4,-2.2 2,-0.2 -9,-0.2 0.862 112.0 57.2 -51.0 -33.3 6.3 1.0 -1.6 26 26 A A H 3> S+ 0 0 5 -10,-0.8 4,-1.9 -11,-0.5 -1,-0.3 0.931 106.7 47.1 -66.1 -42.7 9.8 1.4 0.1 27 27 A D H <> S+ 0 0 95 -3,-0.6 4,-2.2 -11,-0.5 5,-0.2 0.974 113.2 47.0 -64.1 -52.4 8.8 4.7 1.8 28 28 A V H X S+ 0 0 8 -4,-2.1 4,-2.2 1,-0.2 5,-0.3 0.929 107.9 58.6 -56.4 -43.4 5.4 3.4 3.0 29 29 A A H >X S+ 0 0 1 -4,-2.2 4,-1.3 -5,-0.3 3,-0.6 0.969 106.8 45.4 -51.5 -57.9 7.1 0.3 4.4 30 30 A K H >X S+ 0 0 165 -4,-1.9 4,-0.8 1,-0.3 3,-0.7 0.932 110.5 54.8 -53.4 -45.1 9.5 2.3 6.6 31 31 A K H 3< S+ 0 0 130 -4,-2.2 -1,-0.3 1,-0.3 -2,-0.2 0.879 121.8 29.8 -58.1 -34.8 6.5 4.4 7.8 32 32 A Y H X< S+ 0 0 29 -4,-2.2 3,-1.4 -3,-0.6 6,-0.3 0.377 97.6 91.0-104.9 4.0 4.7 1.2 8.8 33 33 A A H << S+ 0 0 67 -4,-1.3 -2,-0.2 -3,-0.7 -3,-0.2 0.839 84.5 54.7 -68.5 -29.3 7.9 -0.8 9.6 34 34 A G T 3< S+ 0 0 80 -4,-0.8 -1,-0.3 -5,-0.2 2,-0.2 0.196 99.6 85.9 -88.6 19.9 7.7 0.4 13.2 35 35 A R < - 0 0 118 -3,-1.4 -3,-0.1 1,-0.1 -4,-0.0 -0.635 63.6-152.6-112.7 174.1 4.1 -1.0 13.5 36 36 A K S S+ 0 0 186 -2,-0.2 3,-0.2 2,-0.0 -1,-0.1 0.509 94.3 43.5-122.3 -12.7 2.7 -4.5 14.3 37 37 A D > + 0 0 79 1,-0.1 4,-2.0 2,-0.1 5,-0.2 0.149 68.8 120.9-118.8 19.0 -0.6 -4.4 12.4 38 38 A A H > S+ 0 0 4 -6,-0.3 4,-1.5 1,-0.2 5,-0.3 0.774 73.8 61.5 -55.0 -21.0 0.7 -2.8 9.1 39 39 A V H > S+ 0 0 40 -3,-0.2 4,-1.6 2,-0.2 5,-0.4 0.983 106.8 38.9 -71.4 -56.5 -0.6 -6.0 7.5 40 40 A D H > S+ 0 0 106 2,-0.2 4,-2.5 3,-0.2 -2,-0.2 0.970 119.3 48.1 -59.0 -52.7 -4.3 -5.7 8.4 41 41 A Y H X S+ 0 0 85 -4,-2.0 4,-1.6 2,-0.2 5,-0.3 0.982 115.0 43.4 -52.2 -66.9 -4.3 -1.9 7.8 42 42 A L H >X S+ 0 0 21 -4,-1.5 3,-2.7 1,-0.3 4,-1.8 0.945 117.6 43.3 -43.2 -74.7 -2.6 -2.0 4.4 43 43 A A H 3X S+ 0 0 5 -4,-1.6 4,-1.9 -5,-0.3 5,-0.3 0.856 107.3 64.7 -42.5 -35.9 -4.6 -4.9 3.0 44 44 A G H 3< S+ 0 0 42 -4,-2.5 4,-0.3 -5,-0.4 -1,-0.3 0.891 111.4 34.3 -58.3 -36.0 -7.6 -3.2 4.6 45 45 A K H - 0 0 80 -2,-0.3 4,-3.4 1,-0.1 5,-0.3 -0.589 39.1 -90.7-104.1 169.9 -8.8 -11.4 -1.0 66 66 A D H > S+ 0 0 132 1,-0.2 4,-2.3 2,-0.2 5,-0.2 0.939 127.9 50.4 -43.4 -58.0 -7.6 -11.1 2.7 67 67 A A H >> S+ 0 0 57 1,-0.2 4,-1.8 2,-0.2 3,-0.7 0.956 113.2 44.6 -47.1 -58.9 -4.8 -13.6 2.0 68 68 A E H 3> S+ 0 0 70 1,-0.3 4,-1.6 2,-0.2 -1,-0.2 0.917 109.5 57.5 -54.4 -41.3 -3.6 -11.7 -1.1 69 69 A A H 3X S+ 0 0 2 -4,-3.4 4,-2.0 1,-0.2 -1,-0.3 0.886 104.2 53.6 -58.5 -35.5 -3.9 -8.4 0.9 70 70 A K H