==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 11-JUN-97 1AL4 . COMPND 2 MOLECULE: GRAMICIDIN D; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR B.M.BURKHART,R.M.GASSMAN,W.A.PANGBORN,W.L.DUAX . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2710.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 172 0, 0.0 30,-3.0 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0 141.9 25.9 19.3 9.9 2 2 A G E -A 30 0A 69 28,-0.2 2,-0.3 1,-0.1 28,-0.3 -0.448 360.0 -64.3 68.9-143.8 26.0 21.4 13.1 3 3 A A E S+A 29 0A 50 26,-2.4 26,-3.2 3,-0.2 2,-0.4 -0.948 88.3 1.5-149.3 128.6 22.6 22.3 14.5 4 4 A X E S-A 28 0A 87 -2,-0.3 24,-0.2 24,-0.2 2,-0.2 -0.844 89.4 -63.1 105.2-139.4 19.8 24.5 13.2 5 5 A A E S-A 27 0A 26 22,-3.0 22,-1.7 -2,-0.4 2,-0.3 -0.644 95.7 -20.0-160.3 86.9 19.4 26.4 9.9 6 6 A X E S-AB 26 30A 46 24,-3.0 24,-2.6 20,-0.3 2,-0.4 -0.822 91.2 -58.5 108.3-150.9 22.0 29.2 9.3 7 7 A V E S-AB 25 29A 30 18,-2.3 18,-2.8 -2,-0.3 2,-0.5 -0.991 86.8 -21.0-138.8 130.1 24.1 31.0 11.8 8 8 A X E S-AB 24 28A 65 20,-2.8 20,-2.5 -2,-0.4 16,-0.2 -0.643 96.2 -53.1 88.7-127.3 23.2 33.1 14.9 9 9 A W E S-AB 23 27A 131 14,-2.7 14,-2.5 -2,-0.5 2,-0.4 -0.721 92.6 -13.6-160.8 106.1 19.7 34.6 15.2 10 10 A X E S-AB 22 26A 40 16,-2.2 16,-2.8 12,-0.2 2,-0.3 -0.838 88.5 -51.5 114.3-140.4 18.0 36.8 12.6 11 11 A W E S-AB 21 25A 106 10,-2.8 10,-2.5 -2,-0.4 2,-0.4 -0.772 94.3 -15.5-149.1 93.5 19.1 38.6 9.5 12 12 A X E S-AB 20 24A 77 12,-3.0 12,-2.8 8,-0.3 8,-0.2 -0.921 87.6 -62.9 116.8-142.2 22.1 41.0 9.6 13 13 A W E S-AB 19 23A 157 6,-2.8 6,-2.0 -2,-0.4 2,-0.4 -0.592 94.9 -3.9-157.8 86.2 24.0 42.7 12.5 14 14 A X E AB 18 22A 72 8,-2.8 8,-2.9 4,-0.3 4,-0.2 -0.975 360.0 360.0 133.6-143.2 22.0 45.1 14.7 15 15 A W 0 0 192 2,-3.4 6,-0.2 -2,-0.4 5,-0.1 -0.589 360.0 360.0-157.4 360.0 18.5 46.5 14.8 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 175 0, 0.0 -2,-3.4 0, 0.0 -4,-0.1 0.000 360.0 360.0 360.0 141.8 21.7 50.7 15.3 18 2 B G E -A 14 0A 66 -4,-0.2 2,-0.4 -3,-0.1 -4,-0.3 -0.331 360.0 -49.9 65.4-145.2 23.6 48.8 12.6 19 3 B A E S-A 13 0A 50 -6,-2.0 -6,-2.8 3,-0.2 2,-0.2 -0.984 87.7 -14.0-138.9 141.1 21.8 46.8 10.0 20 4 B X E S-A 12 0A 122 -2,-0.4 2,-0.3 -8,-0.2 -8,-0.3 -0.498 91.5 -59.5 75.3-141.6 19.0 44.3 9.7 21 5 B A E S-A 11 0A 24 -10,-2.5 -10,-2.8 -6,-0.2 2,-0.3 -0.815 90.8 -13.4-153.1 107.2 17.7 42.5 12.7 22 6 B X E S-AB 10 14A 48 -8,-2.9 -8,-2.8 -2,-0.3 2,-0.4 -0.725 89.1 -59.9 103.5-155.0 19.7 40.2 15.1 23 7 B V E S-AB 9 13A 44 -14,-2.5 -14,-2.7 -2,-0.3 2,-0.4 -0.903 94.9 -6.8-138.2 105.9 23.1 38.7 14.6 24 8 B X E S-AB 8 12A 40 -12,-2.8 -12,-3.0 -2,-0.4 2,-0.2 -0.869 87.8 -69.3 119.6-146.7 23.8 36.3 11.7 25 9 B W E S-AB 7 11A 124 -18,-2.8 -18,-2.3 -2,-0.4 2,-0.5 -0.742 92.9 -19.8-156.4 101.4 21.5 34.8 9.1 26 10 B X E S-AB 6 10A 63 -16,-2.8 -16,-2.2 -20,-0.3 2,-0.3 -0.844 95.9 -46.8 100.4-131.1 19.1 32.2 10.2 27 11 B W E S-AB 5 9A 131 -22,-1.7 -22,-3.0 -2,-0.5 2,-0.5 -0.954 87.2 -20.7-155.8 116.7 19.3 30.2 13.4 28 12 B X E S-AB 4 8A 94 -20,-2.5 -20,-2.8 -2,-0.3 -24,-0.2 -0.704 94.2 -53.0 94.0-127.7 21.9 28.2 15.3 29 13 B W E S-AB 3 7A 149 -26,-3.2 -26,-2.4 -2,-0.5 2,-0.4 -0.578 95.9 -17.3-161.1 88.6 25.0 27.0 13.5 30 14 B X E AB 2 6A 72 -24,-2.6 -24,-3.0 -28,-0.3 -28,-0.2 -0.924 360.0 360.0 121.2-140.3 24.8 24.8 10.3 31 15 B W 0 0 188 -30,-3.0 -26,-0.2 -2,-0.4 -3,-0.1 -0.736 360.0 360.0-159.2 360.0 22.0 22.9 8.7