==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-FEB-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 05-JUN-97 1ALX . COMPND 2 MOLECULE: GRAMICIDIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR B.M.BURKHART,D.A.LANGS,G.D.SMITH,C.COURSEILLE,G.PRECIGOUX,M. . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2903.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 172 0, 0.0 30,-2.7 0, 0.0 28,-0.1 0.000 360.0 360.0 360.0 135.4 5.8 -3.3 -19.8 2 2 A G E -A 30 0A 59 28,-0.2 2,-0.4 29,-0.1 28,-0.2 -0.397 360.0 -54.9 72.7-154.3 4.8 -0.4 -17.5 3 3 A A E S-A 29 0A 52 26,-2.1 26,-3.1 3,-0.1 2,-0.2 -0.993 94.2 -19.2-135.6 135.1 7.2 2.1 -16.1 4 4 A X E S-A 28 0A 119 -2,-0.4 2,-0.3 24,-0.2 24,-0.3 -0.484 96.6 -72.8 70.1-135.7 10.4 1.7 -14.1 5 5 A A E S+A 27 0A 23 22,-2.6 22,-3.4 -2,-0.2 2,-0.4 -0.918 85.4 3.9-158.9 142.0 10.4 -1.8 -12.4 6 6 A X E S-AB 26 30A 59 24,-3.0 24,-2.5 -2,-0.3 2,-0.3 -0.734 94.1 -55.3 94.1-133.1 8.6 -3.5 -9.6 7 7 A V E S-AB 25 29A 45 18,-2.5 18,-2.8 -2,-0.4 2,-0.4 -0.919 89.6 -26.4-154.0 118.4 5.7 -1.9 -7.7 8 8 A X E S-AB 24 28A 77 20,-2.4 20,-2.5 -2,-0.3 2,-0.3 -0.641 95.0 -49.0 88.6-129.0 5.7 1.4 -5.8 9 9 A W E S-AB 23 27A 128 14,-2.3 14,-2.8 -2,-0.4 2,-0.4 -0.845 87.7 -18.9-156.9 126.5 9.0 2.8 -4.4 10 10 A X E S-AB 22 26A 97 16,-3.0 16,-2.4 -2,-0.3 2,-0.2 -0.779 91.2 -56.9 92.6-134.2 11.9 1.5 -2.3 11 11 A Y E S-AB 21 25A 93 10,-2.7 10,-2.5 -2,-0.4 2,-0.4 -0.728 93.8 -3.2-157.3 106.5 11.6 -1.6 -0.2 12 12 A X E S-AB 20 24A 60 12,-2.7 12,-2.8 8,-0.2 8,-0.2 -0.924 84.1 -73.2 122.4-139.8 9.1 -2.2 2.5 13 13 A W E S-AB 19 23A 154 6,-2.8 6,-2.1 -2,-0.4 2,-0.4 -0.668 91.3 -3.3-167.6 99.3 6.4 -0.1 4.0 14 14 A X E AB 18 22A 91 8,-2.4 8,-2.2 4,-0.3 4,-0.2 -0.914 360.0 360.0 115.8-146.2 7.2 2.9 6.3 15 15 A W 0 0 220 2,-3.1 6,-0.2 -2,-0.4 5,-0.1 -0.747 360.0 360.0-153.6 360.0 10.6 3.9 7.6 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 180 0, 0.0 -2,-3.1 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 129.9 7.6 2.9 11.9 18 2 B G E -A 14 0A 63 -4,-0.2 2,-0.3 -6,-0.1 -4,-0.3 -0.478 360.0 -63.3 70.4-138.2 6.8 -0.1 9.7 19 3 B A E S-A 13 0A 47 -6,-2.1 -6,-2.8 -2,-0.2 2,-0.1 -0.999 85.4 -8.2-151.3 151.9 9.7 -1.6 8.0 20 4 B X E S-A 12 0A 112 -2,-0.3 2,-0.3 -8,-0.2 -8,-0.2 -0.414 92.8 -70.1 65.7-139.1 12.4 -0.9 5.4 21 5 B A E S+A 11 0A 28 -10,-2.5 -10,-2.7 -6,-0.2 2,-0.4 -0.830 89.7 10.7-154.0 125.9 11.9 2.4 3.6 22 6 B X E S-AB 10 14A 49 -8,-2.2 -8,-2.4 -2,-0.3 -12,-0.2 -0.884 87.0 -71.7 118.3-148.9 9.2 3.3 1.0 23 7 B V E S-AB 9 13A 51 -14,-2.8 -14,-2.3 -2,-0.4 2,-0.4 -0.723 92.6 -11.9-159.5 97.8 6.1 1.6 -0.1 24 8 B X E S-AB 8 12A 52 -12,-2.8 -12,-2.7 -16,-0.2 2,-0.3 -0.909 91.2 -63.8 114.7-141.5 6.4 -1.5 -2.2 25 9 B W E S-AB 7 11A 148 -18,-2.8 -18,-2.5 -2,-0.4 2,-0.4 -0.822 92.8 -7.2-157.0 106.9 9.5 -2.9 -3.9 26 10 B X E S-AB 6 10A 79 -16,-2.4 -16,-3.0 -2,-0.3 -20,-0.2 -0.902 92.0 -66.6 117.9-129.1 11.4 -1.2 -6.7 27 11 B W E S-AB 5 9A 141 -22,-3.4 -22,-2.6 -2,-0.4 2,-0.4 -0.702 90.6 -9.8-167.0 98.0 10.3 2.0 -8.5 28 12 B X E S-AB 4 8A 82 -20,-2.5 -20,-2.4 -24,-0.3 2,-0.3 -0.904 91.6 -55.3 119.8-133.7 7.2 2.3 -10.7 29 13 B W E S-AB 3 7A 151 -26,-3.1 -26,-2.1 -2,-0.4 2,-0.5 -0.804 89.7 -14.9-159.8 109.5 4.9 -0.5 -12.0 30 14 B X E AB 2 6A 71 -24,-2.5 -24,-3.0 -2,-0.3 -28,-0.2 -0.837 360.0 360.0 105.6-130.4 5.9 -3.6 -14.0 31 15 B W 0 0 200 -30,-2.7 -26,-0.2 -2,-0.5 -27,-0.1 -0.616 360.0 360.0-158.0 360.0 9.2 -4.2 -15.8