==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 06-JUN-97 1ALZ . COMPND 2 MOLECULE: ILE-GRAMICIDIN C; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR B.M.BURKHART,W.A.PANGBORN,W.L.DUAX,D.A.LANGS . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2714.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 209 0, 0.0 30,-3.0 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0 145.2 25.4 19.3 9.7 2 2 A G E -A 30 0A 63 28,-0.2 2,-0.3 26,-0.0 28,-0.3 -0.413 360.0 -62.2 65.1-138.6 25.5 21.3 12.9 3 3 A A E S+A 29 0A 48 26,-2.1 26,-3.2 3,-0.2 2,-0.3 -0.989 86.5 0.8-151.8 137.8 22.2 22.3 14.3 4 4 A X E S-A 28 0A 87 -2,-0.3 24,-0.2 24,-0.2 2,-0.2 -0.696 90.1 -63.5 92.1-138.8 19.2 24.4 13.2 5 5 A A E S-A 27 0A 25 22,-3.3 22,-1.8 -2,-0.3 2,-0.3 -0.645 95.3 -17.8-160.5 87.9 18.8 26.3 10.0 6 6 A X E S-AB 26 30A 45 24,-3.0 24,-2.7 20,-0.3 2,-0.4 -0.827 91.2 -58.0 109.3-150.0 21.3 29.1 9.2 7 7 A V E S-AB 25 29A 29 18,-2.1 18,-3.1 -2,-0.3 2,-0.4 -0.988 85.6 -22.0-140.4 129.5 23.5 30.9 11.6 8 8 A X E S-AB 24 28A 61 20,-2.9 20,-2.5 -2,-0.4 16,-0.2 -0.629 96.5 -51.2 89.0-127.8 22.8 33.0 14.8 9 9 A W E S-AB 23 27A 131 14,-2.9 14,-2.5 -2,-0.4 2,-0.4 -0.748 92.6 -26.1-158.0 103.2 19.4 34.5 15.3 10 10 A X E S-AB 22 26A 56 16,-2.5 16,-2.5 12,-0.2 2,-0.4 -0.756 91.3 -35.2 105.2-138.5 17.5 36.6 12.8 11 11 A Y E S-AB 21 25A 85 10,-2.3 10,-3.3 -2,-0.4 2,-0.3 -0.981 90.7 -31.5-136.8 112.0 18.8 38.8 9.9 12 12 A X E S-AB 20 24A 80 12,-2.4 12,-2.7 -2,-0.4 8,-0.2 -0.567 89.4 -54.6 92.1-134.6 21.9 40.9 9.7 13 13 A W E S-AB 19 23A 141 6,-3.3 6,-2.2 -2,-0.3 2,-0.4 -0.605 97.4 -5.3-158.3 85.1 23.5 42.7 12.6 14 14 A X E AB 18 22A 68 8,-2.7 8,-2.9 4,-0.3 4,-0.2 -0.967 360.0 360.0 135.6-143.1 21.4 45.0 14.7 15 15 A W 0 0 192 2,-3.4 6,-0.2 -2,-0.4 3,-0.1 -0.649 360.0 360.0-157.9 360.0 17.9 46.4 14.8 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 175 0, 0.0 -2,-3.4 0, 0.0 -4,-0.1 0.000 360.0 360.0 360.0 143.3 21.1 50.7 15.3 18 2 B G E -A 14 0A 67 -4,-0.2 2,-0.4 1,-0.1 -4,-0.3 -0.331 360.0 -53.4 64.5-147.1 23.1 48.7 12.7 19 3 B A E S-A 13 0A 49 -6,-2.2 -6,-3.3 3,-0.2 2,-0.4 -0.961 88.6 -9.7-139.8 126.4 21.3 46.8 10.0 20 4 B X E S-A 12 0A 115 -2,-0.4 -8,-0.2 -8,-0.2 2,-0.2 -0.791 88.1 -60.3 103.4-140.3 18.5 44.2 10.0 21 5 B A E S-A 11 0A 30 -10,-3.3 -10,-2.3 -2,-0.4 2,-0.3 -0.615 94.8 -15.0-156.8 86.7 16.9 42.4 12.9 22 6 B X E S-AB 10 14A 45 -8,-2.9 -8,-2.7 -12,-0.3 2,-0.4 -0.854 87.2 -62.6 118.9-155.5 19.2 40.1 15.0 23 7 B V E S-AB 9 13A 41 -14,-2.5 -14,-2.9 -2,-0.3 2,-0.4 -0.919 94.4 -3.8-140.0 109.3 22.6 38.7 14.5 24 8 B X E S-AB 8 12A 39 -12,-2.7 -12,-2.4 -2,-0.4 -16,-0.2 -0.908 89.5 -69.7 117.1-144.2 23.3 36.3 11.6 25 9 B W E S-AB 7 11A 134 -18,-3.1 -18,-2.1 -2,-0.4 2,-0.5 -0.669 92.4 -22.6-159.2 96.8 21.0 34.8 9.0 26 10 B X E S-AB 6 10A 60 -16,-2.5 -16,-2.5 -20,-0.3 2,-0.3 -0.846 96.2 -45.0 101.8-129.8 18.5 32.2 10.2 27 11 B W E S-AB 5 9A 128 -22,-1.8 -22,-3.3 -2,-0.5 2,-0.5 -0.957 87.9 -19.9-156.0 115.4 18.8 30.1 13.4 28 12 B X E S-AB 4 8A 88 -20,-2.5 -20,-2.9 -2,-0.3 -24,-0.2 -0.732 93.2 -54.2 97.3-129.2 21.5 28.1 15.1 29 13 B W E S-AB 3 7A 152 -26,-3.2 -26,-2.1 -2,-0.5 2,-0.4 -0.553 96.4 -18.8-161.5 87.9 24.6 26.9 13.3 30 14 B X E AB 2 6A 75 -24,-2.7 -24,-3.0 -28,-0.3 -28,-0.2 -0.928 360.0 360.0 120.5-141.2 24.3 24.8 10.1 31 15 B W 0 0 196 -30,-3.0 -26,-0.2 -2,-0.4 -3,-0.1 -0.735 360.0 360.0-156.2 360.0 21.4 22.8 8.7