==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN 19-AUG-05 2ARI . COMPND 2 MOLECULE: ENVELOPE POLYPROTEIN GP160; . SOURCE 2 ORGANISM_SCIENTIFIC: HUMAN IMMUNODEFICIENCY VIRUS 1; . AUTHOR C.P.JARONIEC,J.D.KAUFMAN,S.J.STAHL,M.VIARD,R.BLUMENTHAL, . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2910.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 60.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 43.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A A 0 0 141 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 114.5 -2.5 -22.6 -3.7 2 3 A V + 0 0 133 3,-0.0 4,-0.1 1,-0.0 0, 0.0 0.941 360.0 135.1 55.2 47.6 -1.7 -19.0 -2.7 3 4 A G S > S+ 0 0 53 2,-0.1 3,-1.4 3,-0.1 4,-0.2 0.907 75.2 17.0 -89.4 -78.0 1.8 -20.0 -1.4 4 5 A I T >> S+ 0 0 120 1,-0.3 3,-2.8 2,-0.2 4,-1.1 0.801 109.6 82.1 -67.4 -25.0 4.4 -17.5 -2.7 5 6 A G H 3> S+ 0 0 43 1,-0.3 4,-2.2 2,-0.2 -1,-0.3 0.821 81.1 68.9 -48.6 -27.1 1.6 -15.1 -3.5 6 7 A A H <> S+ 0 0 55 -3,-1.4 4,-1.8 1,-0.2 -1,-0.3 0.810 94.5 53.3 -63.6 -30.8 1.9 -14.3 0.2 7 8 A L H <> S+ 0 0 122 -3,-2.8 4,-1.6 -4,-0.2 5,-0.3 0.940 109.3 44.9 -76.1 -44.4 5.4 -12.7 -0.3 8 9 A F H X S+ 0 0 144 -4,-1.1 4,-3.1 1,-0.2 5,-0.3 0.965 114.4 50.8 -64.0 -46.4 4.3 -10.2 -3.0 9 10 A L H X S+ 0 0 126 -4,-2.2 4,-1.1 1,-0.2 -1,-0.2 0.939 105.0 57.8 -56.0 -45.1 1.2 -9.3 -1.0 10 11 A G H < S+ 0 0 59 -4,-1.8 -1,-0.2 -5,-0.2 -2,-0.2 0.917 119.4 27.6 -53.2 -47.1 3.3 -8.7 2.1 11 12 A F H >X S+ 0 0 151 -4,-1.6 3,-2.5 -3,-0.2 4,-0.9 0.857 112.7 62.1 -88.0 -35.6 5.5 -6.0 0.4 12 13 A L H 3X S+ 0 0 110 -4,-3.1 4,-1.0 -5,-0.3 -1,-0.2 0.734 96.7 65.5 -62.6 -15.0 3.1 -4.6 -2.2 13 14 A G H 3X S+ 0 0 36 -4,-1.1 4,-0.6 -5,-0.3 -1,-0.3 0.519 93.8 60.1 -84.5 -1.5 1.0 -3.6 0.9 14 15 A A H <> S+ 0 0 38 -3,-2.5 4,-1.4 2,-0.1 5,-0.2 0.825 98.5 55.8 -89.3 -38.8 3.8 -1.2 1.9 15 16 A A H X S+ 0 0 56 -4,-0.9 4,-2.1 1,-0.2 5,-0.2 0.927 109.8 43.6 -62.1 -47.4 3.6 0.9 -1.3 16 17 A G H X S+ 0 0 54 -4,-1.0 4,-0.9 1,-0.2 -1,-0.2 0.891 114.0 51.3 -66.6 -38.8 -0.2 1.7 -1.0 17 18 A S H < S+ 0 0 93 -4,-0.6 4,-0.4 1,-0.2 -1,-0.2 0.746 113.8 44.2 -71.1 -24.0 0.2 2.5 2.7 18 19 A T H X S+ 0 0 102 -4,-1.4 4,-0.7 -3,-0.2 3,-0.4 0.835 113.4 48.4 -88.7 -39.1 3.1 4.9 2.1 19 20 A M H < S+ 0 0 153 -4,-2.1 -2,-0.2 -5,-0.2 -3,-0.1 0.658 102.6 65.8 -77.1 -13.8 1.6 6.7 -0.9 20 21 A G T >< S+ 0 0 36 -4,-0.9 3,-1.0 -5,-0.2 -1,-0.2 0.813 95.0 56.6 -77.8 -28.6 -1.7 7.1 1.1 21 22 A A T 34 S+ 0 0 59 -3,-0.4 4,-0.4 -4,-0.4 -1,-0.2 0.852 96.3 63.1 -71.8 -31.6 -0.0 9.4 3.6 22 23 A A T 3< S+ 0 0 75 -4,-0.7 2,-1.3 1,-0.2 -1,-0.2 0.538 76.0 97.4 -70.7 -0.6 1.1 11.8 0.8 23 24 A S S < S- 0 0 46 -3,-1.0 -1,-0.2 1,-0.1 -2,-0.1 -0.111 113.8 -87.9 -80.1 43.4 -2.6 12.3 0.2 24 25 A M - 0 0 116 -2,-1.3 3,-0.2 1,-0.2 -2,-0.1 0.937 37.1-148.8 50.5 90.5 -2.5 15.5 2.3 25 26 A T S S+ 0 0 115 -4,-0.4 -1,-0.2 1,-0.2 -3,-0.1 0.444 77.8 96.5 -69.6 7.1 -3.1 14.2 5.9 26 27 A L S S- 0 0 132 1,-0.1 -1,-0.2 3,-0.0 -2,-0.1 0.981 107.8 -82.4 -59.7 -80.2 -4.7 17.7 6.5 27 28 A T S S+ 0 0 135 -3,-0.2 -2,-0.1 2,-0.0 -1,-0.1 0.319 90.1 115.4-164.9 -23.0 -8.4 16.8 5.9 28 29 A V - 0 0 94 1,-0.1 -2,-0.0 -4,-0.0 -1,-0.0 -0.254 62.3-131.8 -58.8 147.7 -9.1 16.9 2.2 29 30 A Q 0 0 180 1,-0.2 -1,-0.1 -3,-0.0 -3,-0.0 0.906 360.0 360.0 -67.3 -96.0 -10.1 13.4 0.8 30 31 A A 0 0 133 0, 0.0 -1,-0.2 0, 0.0 -7,-0.0 -0.976 360.0 360.0-170.8 360.0 -8.0 12.7 -2.4