==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 04-NOV-96 1AXH . COMPND 2 MOLECULE: ATRACOTOXIN-HVI; . SOURCE 2 ORGANISM_SCIENTIFIC: HADRONYCHE VERSUTA; . AUTHOR J.I.FLETCHER,S.I.O'DONOGHUE,M.NILGES,G.F.KING . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2961.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 43.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 145 0, 0.0 2,-2.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 154.3 2.2 -2.1 -8.5 2 2 A P + 0 0 141 0, 0.0 3,-0.1 0, 0.0 2,-0.1 -0.463 360.0 129.5 -78.4 71.2 2.8 -2.8 -4.8 3 3 A T - 0 0 104 -2,-2.1 15,-0.1 1,-0.3 13,-0.0 -0.079 63.6 -31.0-103.7-154.9 6.6 -2.9 -5.0 4 4 A a S S- 0 0 45 1,-0.1 -1,-0.3 13,-0.1 13,-0.2 -0.187 74.1 -96.3 -60.5 155.9 9.3 -1.1 -3.0 5 5 A I B -a 17 0A 19 11,-2.1 13,-2.7 -3,-0.1 14,-0.4 -0.644 41.5-134.5 -79.4 123.6 8.5 2.3 -1.5 6 6 A P > - 0 0 55 0, 0.0 3,-2.2 0, 0.0 30,-0.3 -0.355 35.7 -75.7 -77.2 157.5 9.8 5.1 -3.8 7 7 A S T 3 S+ 0 0 74 1,-0.3 30,-0.2 30,-0.2 15,-0.0 -0.183 120.4 28.2 -51.6 138.4 11.6 8.2 -2.5 8 8 A G T 3 S+ 0 0 58 28,-1.9 -1,-0.3 1,-0.4 29,-0.1 0.141 100.8 106.8 93.7 -18.7 9.3 10.7 -0.8 9 9 A Q S < S- 0 0 96 -3,-2.2 27,-1.4 28,-0.1 -1,-0.4 -0.555 81.3 -94.8 -91.6 157.6 6.9 8.0 0.2 10 10 A P B -B 35 0B 81 0, 0.0 25,-0.3 0, 0.0 -1,-0.1 -0.567 40.8-167.5 -75.7 128.2 6.5 6.7 3.8 11 11 A b - 0 0 5 23,-1.3 23,-0.2 -2,-0.3 3,-0.1 -0.935 20.4-154.7-119.1 140.3 8.5 3.6 4.6 12 12 A P S S+ 0 0 59 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 0.891 81.0 2.3 -77.1 -42.0 8.2 1.3 7.7 13 13 A Y S > S- 0 0 160 21,-0.0 3,-1.7 1,-0.0 7,-0.1 -0.931 72.7-108.9-141.8 164.5 11.8 0.0 7.7 14 14 A N G > S+ 0 0 79 -2,-0.3 3,-0.5 1,-0.3 -1,-0.0 0.602 116.3 67.7 -69.4 -9.9 15.0 0.5 5.7 15 15 A E G 3 S+ 0 0 164 1,-0.2 -1,-0.3 6,-0.1 6,-0.0 0.277 98.5 50.4 -92.0 9.4 14.3 -3.0 4.4 16 16 A N G < S+ 0 0 70 -3,-1.7 -11,-2.1 -12,-0.1 2,-0.3 0.225 85.2 109.3-128.0 9.4 11.2 -1.7 2.5 17 17 A c B < -a 5 0A 0 -3,-0.5 3,-0.2 -13,-0.2 5,-0.1 -0.664 67.4-136.8 -90.9 145.6 12.8 1.3 0.7 18 18 A a S S+ 0 0 53 -13,-2.7 -1,-0.1 -2,-0.3 -14,-0.1 0.872 114.9 36.8 -65.0 -36.2 13.4 1.3 -3.0 19 19 A S S S- 0 0 60 -14,-0.4 -1,-0.3 18,-0.2 3,-0.1 0.445 111.4-124.6 -92.5 -4.4 16.8 2.8 -2.3 20 20 A Q S S+ 0 0 116 -3,-0.2 2,-0.6 1,-0.2 -2,-0.1 0.595 80.3 113.0 69.7 10.1 17.1 0.7 0.8 21 21 A S - 0 0 55 16,-0.2 16,-2.3 -8,-0.1 2,-0.3 -0.903 45.2-177.1-119.7 104.3 17.6 3.9 2.7 22 22 A b E -C 36 0B 18 -2,-0.6 2,-0.2 14,-0.2 14,-0.2 -0.741 4.9-179.9 -99.8 147.2 14.9 4.9 5.2 23 23 A T E -C 35 0B 43 12,-2.0 12,-1.6 -2,-0.3 2,-0.5 -0.790 27.3-113.0-135.7 177.8 14.9 8.1 7.2 24 24 A F E +C 34 0B 106 10,-0.3 2,-0.3 -2,-0.2 10,-0.3 -0.964 33.4 176.3-122.4 117.0 12.8 10.0 9.7 25 25 A K E -C 33 0B 106 8,-1.7 8,-2.2 -2,-0.5 2,-0.3 -0.856 28.9-115.0-118.8 153.8 11.1 13.3 8.8 26 26 A E E -C 32 0B 142 -2,-0.3 6,-0.3 6,-0.2 2,-0.1 -0.673 27.5-152.4 -89.8 141.5 8.7 15.5 10.8 27 27 A N - 0 0 50 4,-2.0 3,-0.2 -2,-0.3 -1,-0.1 -0.205 30.5-103.1 -96.8-169.4 5.1 16.0 9.7 28 28 A E S S+ 0 0 192 1,-0.2 -1,-0.0 2,-0.1 4,-0.0 0.679 113.6 71.8 -89.6 -21.5 2.7 18.9 10.3 29 29 A N S S- 0 0 141 1,-0.1 -1,-0.2 2,-0.0 3,-0.1 0.644 118.7-107.7 -67.8 -13.8 0.8 17.0 13.0 30 30 A G S S+ 0 0 53 1,-0.3 2,-0.1 -3,-0.2 -2,-0.1 0.575 86.2 108.4 95.1 13.5 3.9 17.7 15.1 31 31 A N - 0 0 94 -6,-0.0 -4,-2.0 0, 0.0 2,-0.4 -0.403 64.3-122.2-108.6-172.8 5.0 14.0 15.0 32 32 A T E + C 0 26B 75 -6,-0.3 -6,-0.2 -2,-0.1 2,-0.2 -0.971 29.6 169.8-140.5 122.3 7.9 12.2 13.2 33 33 A V E - C 0 25B 68 -8,-2.2 -8,-1.7 -2,-0.4 2,-0.4 -0.549 34.0 -99.9-118.2-175.8 7.5 9.3 10.8 34 34 A K E + C 0 24B 60 -10,-0.3 -23,-1.3 -2,-0.2 -10,-0.3 -0.924 37.9 173.7-114.3 136.1 9.8 7.4 8.4 35 35 A R E -BC 10 23B 60 -12,-1.6 -12,-2.0 -2,-0.4 2,-0.4 -0.549 33.0 -90.3-123.7-171.1 10.1 8.1 4.7 36 36 A c E C 0 22B 4 -27,-1.4 -28,-1.9 -30,-0.3 -14,-0.2 -0.843 360.0 360.0-109.6 144.9 12.2 6.9 1.8 37 37 A D 0 0 110 -16,-2.3 -18,-0.2 -2,-0.4 -16,-0.2 -0.512 360.0 360.0 -75.4 360.0 15.4 8.5 0.5