==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 05-SEP-05 2AXK . COMPND 2 MOLECULE: DISCREPIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.PROCHNICKA-CHALUFOUR,G.CORZO,H.SATAKE,M.-F.MARTIN- . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2721.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 63.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 23.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 18.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 151 0, 0.0 2,-1.0 0, 0.0 36,-0.2 0.000 360.0 360.0 360.0-162.3 -1.8 -9.5 0.6 2 2 A I E +A 36 0A 28 34,-2.2 34,-2.7 2,-0.0 2,-0.6 -0.676 360.0 168.4 -83.9 101.8 -1.9 -6.5 -1.8 3 3 A D E +A 35 0A 87 -2,-1.0 32,-0.1 32,-0.2 -1,-0.0 -0.910 10.6 170.6-116.4 101.5 1.5 -6.2 -3.4 4 4 A T E - 0 0 42 30,-0.7 -1,-0.1 -2,-0.6 3,-0.1 0.387 52.2-116.9 -90.1 3.2 1.3 -3.7 -6.3 5 5 A N E + 0 0 99 1,-0.2 2,-0.5 29,-0.2 30,-0.1 0.948 65.8 147.9 57.8 51.7 5.1 -3.7 -6.6 6 6 A V E - 0 0 57 28,-0.4 28,-3.2 0, 0.0 -1,-0.2 -0.972 47.5-127.8-124.6 118.6 5.2 -0.1 -5.7 7 7 A K E -A 33 0A 153 -2,-0.5 2,-0.8 26,-0.3 26,-0.3 -0.274 34.0-104.7 -63.2 148.3 8.2 1.5 -3.9 8 8 A a + 0 0 39 24,-1.8 3,-0.2 1,-0.1 -1,-0.1 -0.677 32.6 179.3 -86.7 111.4 7.2 3.5 -0.8 9 9 A S S S- 0 0 90 -2,-0.8 -1,-0.1 1,-0.5 2,-0.1 -0.086 88.7 -34.0 -86.4 32.9 7.4 7.2 -1.2 10 10 A G >> - 0 0 33 1,-0.1 3,-2.1 2,-0.1 4,-0.9 0.034 62.9-111.1 113.2 128.8 6.2 7.1 2.4 11 11 A S H 3> S+ 0 0 41 1,-0.3 4,-1.8 -3,-0.2 16,-0.2 0.717 115.6 68.4 -61.1 -19.0 3.8 4.6 3.9 12 12 A S H 34 S+ 0 0 99 1,-0.2 4,-0.3 2,-0.2 -1,-0.3 0.528 93.3 57.7 -81.7 -5.8 1.3 7.4 4.1 13 13 A K H <> S+ 0 0 107 -3,-2.1 4,-2.6 2,-0.1 3,-0.5 0.912 109.3 41.5 -83.0 -51.2 1.0 7.5 0.3 14 14 A b H X S+ 0 0 2 -4,-0.9 4,-3.5 1,-0.2 5,-0.4 0.915 108.5 58.7 -62.4 -47.0 -0.1 3.9 -0.1 15 15 A V H < S+ 0 0 47 -4,-1.8 -1,-0.2 12,-0.4 4,-0.2 0.793 115.5 37.4 -57.7 -28.0 -2.5 3.8 2.9 16 16 A K H > S+ 0 0 157 -3,-0.5 4,-0.5 -4,-0.3 3,-0.3 0.880 123.4 38.3 -89.0 -43.8 -4.4 6.6 1.3 17 17 A I H >X S+ 0 0 67 -4,-2.6 4,-1.3 1,-0.2 3,-0.8 0.811 105.2 65.1 -82.3 -29.7 -4.2 5.7 -2.4 18 18 A c H 3X S+ 0 0 0 -4,-3.5 4,-1.9 -5,-0.3 6,-0.7 0.744 94.7 64.3 -65.5 -20.2 -4.6 1.9 -1.9 19 19 A I H 34 S+ 0 0 89 -5,-0.4 -1,-0.3 -3,-0.3 -2,-0.2 0.886 103.4 45.3 -64.7 -39.5 -8.1 2.8 -0.6 20 20 A D H << S+ 0 0 136 -3,-0.8 -2,-0.2 -4,-0.5 -1,-0.2 0.745 110.8 58.2 -77.6 -23.5 -9.0 4.1 -4.0 21 21 A R H < S- 0 0 82 -4,-1.3 -2,-0.2 3,-0.1 -3,-0.1 0.996 126.7 -24.7 -67.4 -67.4 -7.4 1.0 -5.6 22 22 A Y S < S- 0 0 149 -4,-1.9 -3,-0.1 2,-0.1 -4,-0.0 0.645 93.5 -66.8-117.1 -94.3 -9.3 -1.9 -4.0 23 23 A N S S+ 0 0 135 -5,-0.2 2,-0.2 0, 0.0 -4,-0.2 0.147 85.4 116.1-160.1 18.4 -11.2 -1.9 -0.7 24 24 A T - 0 0 3 -6,-0.7 -2,-0.1 1,-0.1 -3,-0.1 -0.572 43.2-166.7-103.7 161.1 -8.5 -1.5 1.9 25 25 A R S S+ 0 0 150 -2,-0.2 2,-0.4 1,-0.1 -6,-0.1 0.178 71.7 70.7-124.4 10.2 -7.7 1.2 4.5 26 26 A G + 0 0 16 -8,-0.1 11,-1.9 -12,-0.1 2,-0.3 -0.959 45.9 152.7-141.6 119.3 -4.3 -0.1 5.5 27 27 A A E -B 36 0A 11 -2,-0.4 -12,-0.4 9,-0.3 2,-0.3 -0.994 14.6-175.4-141.2 144.6 -1.0 -0.1 3.6 28 28 A K E -B 35 0A 113 7,-3.0 7,-2.8 -2,-0.3 2,-0.8 -0.988 30.1-123.5-141.6 145.6 2.5 0.0 5.0 29 29 A a E +B 34 0A 30 -2,-0.3 5,-0.2 5,-0.3 -18,-0.1 -0.826 50.9 143.3 -86.2 110.2 6.1 0.2 3.7 30 30 A I S S+ 0 0 95 3,-1.3 -1,-0.2 -2,-0.8 4,-0.1 0.754 71.8 27.9-116.8 -46.6 7.7 -2.9 5.1 31 31 A N S S- 0 0 103 2,-0.5 3,-0.1 0, 0.0 -2,-0.1 0.102 129.9 -75.6-108.3 20.0 10.2 -4.3 2.6 32 32 A G S S+ 0 0 44 1,-0.4 -24,-1.8 -25,-0.0 2,-0.3 0.323 114.4 75.9 101.9 -6.1 10.9 -1.0 0.9 33 33 A R E S-A 7 0A 55 -26,-0.3 -3,-1.3 -5,-0.1 2,-0.7 -0.858 89.7 -94.5-131.0 168.0 7.6 -0.9 -1.0 34 34 A b E - B 0 29A 4 -28,-3.2 -30,-0.7 -2,-0.3 -28,-0.4 -0.757 41.1-179.6 -90.0 113.1 4.0 -0.2 -0.1 35 35 A T E -AB 3 28A 10 -7,-2.8 -7,-3.0 -2,-0.7 2,-0.5 -0.931 19.5-138.6-112.6 135.7 2.0 -3.3 0.7 36 36 A c E -AB 2 27A 0 -34,-2.7 -34,-2.2 -2,-0.4 -9,-0.3 -0.817 12.6-167.6 -99.7 130.8 -1.7 -3.2 1.6 37 37 A Y 0 0 100 -11,-1.9 -12,-0.1 -2,-0.5 -10,-0.0 -0.807 360.0 360.0-120.8 86.2 -2.9 -5.4 4.5 38 38 A P 0 0 97 0, 0.0 -2,-0.0 0, 0.0 -11,-0.0 -0.640 360.0 360.0 -79.5 360.0 -6.8 -5.5 4.5