==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CELLULASE 25-NOV-97 1AZ6 . COMPND 2 MOLECULE: CELLOBIOHYDROLASE I; . SOURCE 2 ORGANISM_SCIENTIFIC: HYPOCREA JECORINA; . AUTHOR M.-L.MATTINEN . 36 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2760.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 61.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 16.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 9 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 156 0, 0.0 19,-0.4 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 96.3 -7.0 -9.2 -4.7 2 2 A Q - 0 0 111 17,-2.1 2,-2.2 16,-0.4 19,-0.1 -0.941 360.0-118.0-123.9 133.6 -7.2 -5.6 -6.3 3 3 A S + 0 0 93 -2,-0.4 2,-1.1 16,-0.2 16,-0.1 -0.299 35.1 176.0 -77.9 64.1 -4.7 -3.9 -8.7 4 4 A H - 0 0 50 -2,-2.2 2,-1.8 14,-0.1 31,-0.2 -0.540 30.0-137.4 -64.3 96.9 -3.5 -0.8 -6.8 5 5 A A S S- 0 0 110 -2,-1.1 2,-1.0 1,-0.1 -1,-0.1 -0.372 72.6 -42.1 -56.5 79.1 -0.9 0.7 -9.2 6 6 A G S S+ 0 0 27 -2,-1.8 29,-2.9 29,-0.1 2,-1.9 -0.685 124.1 78.4 97.7 -81.4 1.7 1.5 -6.5 7 7 A Q + 0 0 104 -2,-1.0 27,-0.2 27,-0.2 -2,-0.1 -0.401 42.1 161.3 -72.1 81.6 -0.1 3.0 -3.4 8 8 A a S S- 0 0 3 -2,-1.9 -1,-0.2 -4,-0.1 26,-0.2 0.882 74.6 -36.0 -54.9 -42.5 -1.6 -0.0 -1.6 9 9 A G - 0 0 3 24,-1.9 5,-0.2 -3,-0.2 25,-0.1 0.022 46.2-161.0-146.7-110.1 -2.0 2.1 1.6 10 10 A G > - 0 0 5 20,-0.2 3,-0.7 3,-0.1 22,-0.2 0.564 55.6 -89.8 92.4 103.2 -0.2 5.0 3.4 11 11 A I T 3 S+ 0 0 106 19,-1.0 -2,-0.0 1,-0.3 0, 0.0 -0.267 123.8 37.6 -59.6 117.4 -1.4 5.1 7.1 12 12 A G T 3 S- 0 0 71 1,-0.1 -1,-0.3 -2,-0.1 2,-0.1 0.434 90.8-177.7 104.2 14.5 -4.4 7.6 7.0 13 13 A Y < - 0 0 113 -3,-0.7 2,-1.8 1,-0.1 -1,-0.1 -0.223 31.1-143.8 -54.1 119.2 -5.4 6.1 3.5 14 14 A S S S+ 0 0 139 -5,-0.2 -1,-0.1 -2,-0.1 -5,-0.0 -0.178 81.0 18.7 -73.1 45.3 -8.5 7.8 1.8 15 15 A G S S- 0 0 39 -2,-1.8 2,-0.4 0, 0.0 -3,-0.1 -0.977 106.6 -32.5 166.5 178.6 -9.5 4.2 0.5 16 16 A P - 0 0 100 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 -0.436 44.5-149.1 -69.1 118.8 -9.3 0.3 0.7 17 17 A T + 0 0 52 -2,-0.4 2,-0.7 -4,-0.1 -7,-0.1 0.426 61.9 104.0 -65.5 -7.3 -5.8 -0.8 1.9 18 18 A V - 0 0 95 1,-0.1 -16,-0.4 -9,-0.1 -14,-0.1 -0.742 46.4-173.0-100.0 108.7 -5.7 -4.2 -0.0 19 19 A b - 0 0 21 -2,-0.7 -17,-2.1 -18,-0.1 -16,-0.2 0.290 30.2-109.8 -72.6-158.4 -3.6 -4.7 -3.3 20 20 A A - 0 0 41 -19,-0.4 2,-0.2 1,-0.4 -17,-0.1 0.845 66.9 -52.8-107.5 -53.9 -3.5 -7.8 -5.7 21 21 A S S S+ 0 0 103 -19,-0.1 2,-0.5 3,-0.1 -1,-0.4 -0.903 72.3 112.4-177.8-164.7 -0.0 -9.7 -5.4 22 22 A G S S- 0 0 66 -2,-0.2 3,-0.1 1,-0.1 14,-0.1 -0.998 94.3 -68.0 108.2-116.1 3.8 -9.4 -5.5 23 23 A T S S- 0 0 121 13,-2.7 2,-0.2 -2,-0.5 -1,-0.1 0.500 98.2 -0.9-126.3 -50.2 4.8 -10.2 -1.9 24 24 A T - 0 0 54 -3,-0.1 12,-1.5 10,-0.1 2,-0.8 -0.809 54.3-113.0-140.5 166.0 3.6 -7.3 0.4 25 25 A a E -A 35 0A 56 -2,-0.2 10,-0.2 10,-0.2 2,-0.2 -0.793 63.7-159.7 -95.1 78.4 2.0 -3.9 1.1 26 26 A Q E -A 34 0A 80 8,-2.2 8,-2.8 -2,-0.8 2,-0.3 -0.454 15.6-122.0 -87.7 136.1 5.4 -2.6 2.1 27 27 A V E +A 33 0A 82 6,-0.2 6,-0.2 -2,-0.2 -1,-0.1 -0.498 31.1 164.6 -69.3 130.6 6.5 0.4 4.2 28 28 A L E S- 0 0 90 4,-2.7 -1,-0.2 1,-0.8 5,-0.1 0.737 88.5 -7.1 -95.4 -73.6 8.8 3.2 2.7 29 29 A N E > S-A 32 0A 120 3,-0.6 3,-2.7 1,-0.0 -1,-0.8 -0.883 90.0-102.2-104.4 155.3 8.1 5.8 5.4 30 30 A P T 3 S+ 0 0 79 0, 0.0 -19,-1.0 0, 0.0 -20,-0.2 0.844 124.6 48.5 -44.7 -43.3 5.3 4.8 8.0 31 31 A Y T 3 S+ 0 0 182 -21,-0.2 2,-0.4 1,-0.2 -4,-0.0 0.462 108.6 61.4 -80.2 -0.6 2.8 7.2 6.2 32 32 A Y E < +A 29 0A 95 -3,-2.7 -4,-2.7 -22,-0.2 -3,-0.6 -0.895 60.7 173.4-130.9 102.7 3.6 5.7 2.7 33 33 A S E -A 27 0A 16 -2,-0.4 -24,-1.9 -6,-0.2 2,-0.3 -0.938 14.2-163.3-109.7 130.8 3.0 1.9 2.1 34 34 A Q E -A 26 0A 55 -8,-2.8 -8,-2.2 -2,-0.4 2,-1.6 -0.803 31.3-100.0-121.7 149.6 3.5 0.5 -1.5 35 35 A b E A 25 0A 33 -29,-2.9 -10,-0.2 -2,-0.3 -29,-0.1 -0.528 360.0 360.0 -73.6 80.6 2.5 -2.6 -3.5 36 36 A L 0 0 89 -2,-1.6 -13,-2.7 -12,-1.5 -1,-0.2 0.566 360.0 360.0-118.2 360.0 5.8 -4.6 -3.3