==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CELLULASE 18-NOV-97 1AZH . COMPND 2 MOLECULE: CELLOBIOHYDROLASE I; . SOURCE 2 ORGANISM_SCIENTIFIC: HYPOCREA JECORINA; . AUTHOR M.-L.MATTINEN . 36 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2677.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 44.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 10 27.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T > 0 0 84 0, 0.0 5,-0.7 0, 0.0 6,-0.1 0.000 360.0 360.0 360.0 -64.8 -4.3 -4.7 -8.4 2 2 A Q T 5 + 0 0 182 3,-0.1 3,-0.1 4,-0.1 4,-0.0 0.912 360.0 21.5 -83.5 -50.8 -8.0 -5.5 -9.2 3 3 A S T 5S+ 0 0 121 1,-0.3 2,-0.7 2,-0.1 0, 0.0 0.939 130.7 43.9 -75.5 -76.2 -8.0 -9.3 -8.6 4 4 A H T 5S- 0 0 79 1,-0.1 -1,-0.3 17,-0.0 17,-0.1 -0.640 103.1-125.4 -65.0 107.8 -4.9 -9.6 -6.3 5 5 A A T 5 - 0 0 75 -2,-0.7 18,-0.4 -3,-0.1 -3,-0.1 -0.306 20.8-160.5 -62.3 140.3 -5.5 -6.6 -4.0 6 6 A G < + 0 0 9 -5,-0.7 17,-0.3 15,-0.2 16,-0.3 0.966 57.5 73.5 -81.4 -74.1 -2.7 -3.9 -3.6 7 7 A Q + 0 0 44 12,-0.2 -1,-0.1 1,-0.2 11,-0.1 -0.355 24.6 150.7 -64.9 117.1 -3.1 -1.7 -0.4 8 8 A a - 0 0 61 -2,-0.3 -1,-0.2 16,-0.1 26,-0.1 0.807 43.1-177.0 -83.9 -55.0 -2.4 -2.9 3.1 9 9 A G - 0 0 19 24,-0.2 23,-0.2 8,-0.1 3,-0.1 0.069 15.7-149.7 75.5 167.4 -1.4 0.7 4.2 10 10 A G > + 0 0 35 21,-0.8 3,-2.3 1,-0.1 2,-1.1 0.014 61.1 40.6-135.9-119.0 -0.1 2.2 7.6 11 11 A I T 3 S- 0 0 110 20,-0.4 -1,-0.1 19,-0.3 20,-0.1 -0.216 134.9 -21.9 -58.7 85.1 -0.2 5.5 9.7 12 12 A G T 3 S+ 0 0 84 -2,-1.1 -1,-0.3 1,-0.2 2,-0.3 0.704 102.1 146.0 84.7 27.1 -3.9 6.5 9.2 13 13 A Y < + 0 0 81 -3,-2.3 -1,-0.2 18,-0.2 19,-0.0 -0.665 11.3 110.9 -98.7 149.0 -4.6 4.5 5.9 14 14 A S + 0 0 112 1,-0.5 -1,-0.1 -2,-0.3 -7,-0.0 -0.023 53.6 92.3-174.5 -55.6 -7.8 2.7 4.7 15 15 A G S S- 0 0 44 1,-0.2 2,-2.5 2,-0.1 -1,-0.5 -0.118 98.1 -83.5 -50.1 152.0 -9.2 4.7 1.6 16 16 A P + 0 0 119 0, 0.0 2,-1.5 0, 0.0 -1,-0.2 -0.290 61.9 155.1 -75.0 71.3 -7.9 3.4 -1.8 17 17 A T - 0 0 67 -2,-2.5 2,-1.0 1,-0.1 -8,-0.1 -0.197 38.7-171.7 -75.4 43.0 -4.5 5.2 -2.1 18 18 A V + 0 0 76 -2,-1.5 2,-0.1 -11,-0.1 3,-0.1 -0.341 30.5 168.0 -81.9 93.7 -3.7 2.3 -4.4 19 19 A b - 0 0 42 -2,-1.0 3,-0.2 1,-0.2 -12,-0.2 -0.420 52.8 -77.1 -63.3 158.5 -0.3 1.5 -5.8 20 20 A A S S- 0 0 51 1,-0.2 2,-1.0 -14,-0.1 15,-0.3 0.315 71.8 -40.7 -55.4-179.7 -0.1 -2.0 -7.4 21 21 A S + 0 0 55 1,-0.2 -1,-0.2 -17,-0.1 -15,-0.2 -0.302 56.5 158.9 -51.5 86.6 0.1 -5.6 -6.1 22 22 A G - 0 0 11 -2,-1.0 2,-2.6 -16,-0.3 -1,-0.2 0.854 17.2-173.9 -75.8 -39.2 2.7 -5.6 -3.1 23 23 A T S S+ 0 0 115 -18,-0.4 2,-0.2 -17,-0.3 -1,-0.1 -0.266 72.2 55.4 64.9 -49.5 1.4 -8.9 -1.5 24 24 A T S S- 0 0 86 -2,-2.6 2,-0.5 -3,-0.1 11,-0.3 -0.503 94.5-117.8 -92.8 173.5 3.8 -8.2 1.4 25 25 A a + 0 0 68 -2,-0.2 9,-0.3 9,-0.1 8,-0.1 -0.817 55.2 127.1-129.2 83.4 3.7 -4.9 3.3 26 26 A Q - 0 0 128 -2,-0.5 2,-0.2 6,-0.1 9,-0.1 0.594 52.5 -84.9-105.1-106.4 6.8 -2.5 3.2 27 27 A V + 0 0 65 7,-0.4 6,-0.2 6,-0.3 4,-0.0 -0.907 29.2 179.2-168.6 147.0 6.8 1.3 2.2 28 28 A L S S+ 0 0 69 4,-1.6 5,-0.1 1,-0.5 -1,-0.1 0.689 97.6 1.9 -98.7 -60.9 6.9 4.1 -0.5 29 29 A N S > S- 0 0 114 3,-0.5 3,-2.2 1,-0.0 -1,-0.5 -0.981 96.6 -92.7-127.7 138.6 6.6 7.0 2.0 30 30 A P T 3 S+ 0 0 110 0, 0.0 -19,-0.3 0, 0.0 3,-0.0 0.603 121.0 41.0 -26.4 -57.4 6.5 6.5 5.8 31 31 A Y T 3 S+ 0 0 139 1,-0.2 2,-1.1 -21,-0.2 -21,-0.8 0.834 104.2 70.3 -64.5 -35.7 2.6 6.4 6.4 32 32 A Y < - 0 0 18 -3,-2.2 2,-2.6 -22,-0.2 -4,-1.6 -0.668 67.4-167.0 -92.8 85.6 1.9 4.3 3.3 33 33 A S + 0 0 34 -2,-1.1 -6,-0.3 -6,-0.2 2,-0.2 -0.168 52.8 86.1 -69.0 49.2 3.3 0.7 4.2 34 34 A Q + 0 0 1 -2,-2.6 -7,-0.4 -9,-0.3 -9,-0.1 -0.677 44.1 52.7-136.3 174.5 3.1 -0.6 0.6 35 35 A b 0 0 30 -15,-0.3 -1,-0.2 -11,-0.3 -8,-0.1 0.909 360.0 360.0 60.4 90.3 4.4 -1.2 -3.0 36 36 A L 0 0 139 -12,-0.1 -1,-0.1 -16,-0.1 -14,-0.1 0.603 360.0 360.0-106.2 360.0 7.9 -2.8 -3.5