==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CELLULASE 18-NOV-97 1AZJ . COMPND 2 MOLECULE: CELLOBIOHYDROLASE I; . SOURCE 2 ORGANISM_SCIENTIFIC: HYPOCREA JECORINA; . AUTHOR M.-L.MATTINEN . 36 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2510.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 61.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 22.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 138 0, 0.0 18,-0.3 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 163.6 9.4 -115.8 0.1 2 2 A Q B -a 19 0A 40 16,-2.5 18,-2.0 14,-0.2 2,-0.1 -0.593 360.0-117.4 -79.2 145.1 6.7 -117.6 2.2 3 3 A S > - 0 0 80 -2,-0.2 3,-1.7 16,-0.2 32,-0.3 -0.408 41.4 -70.1 -80.3 158.2 7.9 -119.7 5.3 4 4 A H T 3 S+ 0 0 111 1,-0.3 2,-0.4 -2,-0.1 32,-0.2 -0.083 123.3 12.7 -38.6 132.5 7.5 -123.5 6.0 5 5 A Y T 3 S+ 0 0 157 30,-2.6 -1,-0.3 1,-0.2 31,-0.1 0.073 96.8 126.6 70.0 -23.1 3.8 -124.4 6.7 6 6 A G S < S- 0 0 19 -3,-1.7 29,-2.4 -2,-0.4 -1,-0.2 -0.352 71.6-102.5 -55.7 137.7 2.7 -120.9 5.4 7 7 A Q E +B 34 0B 69 27,-0.2 27,-0.3 1,-0.1 -1,-0.1 -0.486 40.2 175.7 -71.9 133.9 -0.1 -121.2 2.6 8 8 A a E - 0 0 2 25,-2.4 2,-0.2 -2,-0.2 26,-0.2 0.686 53.9 -36.0-106.1 -33.3 1.2 -120.7 -1.0 9 9 A G E S+B 33 0B 12 24,-2.8 24,-1.4 22,-0.1 2,-0.6 -0.870 70.8 103.3-164.2-166.5 -1.9 -121.4 -3.3 10 10 A G E S+B 32 0B 41 -2,-0.2 2,-2.2 22,-0.2 21,-0.2 -0.875 72.9 66.1 112.0 -98.2 -5.1 -123.3 -4.1 11 11 A I S S- 0 0 123 20,-1.0 3,-0.2 -2,-0.6 20,-0.1 -0.299 130.6 -69.2 -59.8 71.9 -8.5 -121.5 -3.5 12 12 A G S S- 0 0 87 -2,-2.2 -1,-0.3 1,-0.2 2,-0.1 0.855 87.2-159.6 40.2 41.7 -8.0 -118.7 -6.2 13 13 A Y - 0 0 65 -3,-0.1 -1,-0.2 1,-0.1 -3,-0.2 -0.268 25.3-175.6 -80.9 132.3 -5.4 -117.7 -3.6 14 14 A S + 0 0 96 -3,-0.2 -1,-0.1 -2,-0.1 -3,-0.0 -0.075 43.9 57.1 -96.1-164.0 -3.7 -114.3 -3.1 15 15 A G S S+ 0 0 54 1,-0.1 2,-2.5 2,-0.1 -7,-0.0 -0.397 107.7 2.1 76.1-152.0 -0.9 -113.0 -0.7 16 16 A P + 0 0 77 0, 0.0 2,-1.6 0, 0.0 -14,-0.2 -0.273 69.9 168.7 -71.6 62.0 2.7 -114.5 -0.4 17 17 A T + 0 0 67 -2,-2.5 2,-0.3 1,-0.1 -9,-0.1 0.076 49.6 80.6 -71.8 32.0 2.3 -117.1 -3.2 18 18 A V - 0 0 93 -2,-1.6 -16,-2.5 -9,-0.0 -1,-0.1 -0.831 69.9-144.8-145.7 97.7 6.0 -118.1 -3.5 19 19 A b B -a 2 0A 22 -2,-0.3 -16,-0.2 -18,-0.3 2,-0.1 -0.046 20.4-104.8 -60.0 155.9 7.7 -120.6 -1.0 20 20 A A - 0 0 32 -18,-2.0 3,-0.3 1,-0.1 -1,-0.1 -0.461 52.3 -85.3 -67.4 152.7 11.2 -120.6 0.5 21 21 A S S S+ 0 0 129 1,-0.2 2,-1.9 -2,-0.1 -1,-0.1 0.014 110.3 35.8 -62.3 171.4 13.7 -123.3 -0.9 22 22 A G S S+ 0 0 79 1,-0.1 -1,-0.2 -3,-0.1 2,-0.2 -0.411 108.6 79.4 71.2 -57.6 13.9 -126.9 0.4 23 23 A T S S- 0 0 25 -2,-1.9 2,-0.3 -3,-0.3 -1,-0.1 -0.507 77.3-134.1 -76.5 145.9 10.1 -126.8 0.9 24 24 A T - 0 0 79 -2,-0.2 12,-2.2 -3,-0.1 2,-1.4 -0.759 18.4-119.1 -99.1 142.3 7.6 -127.2 -2.1 25 25 A a B -D 35 0C 60 -2,-0.3 10,-0.2 10,-0.2 -18,-0.1 -0.667 57.1-149.8 -70.8 86.3 4.4 -125.2 -3.0 26 26 A Q - 0 0 73 8,-2.9 -18,-0.1 -2,-1.4 3,-0.1 0.170 30.6-149.1 -64.1 177.4 2.2 -128.4 -2.5 27 27 A V + 0 0 120 6,-0.1 6,-0.2 1,-0.1 -1,-0.1 -0.229 38.7 146.2-140.4 50.8 -1.0 -129.8 -4.0 28 28 A L S S- 0 0 123 4,-1.0 5,-0.1 1,-0.2 -1,-0.1 0.878 82.7 -14.7 -56.7 -44.6 -2.5 -131.9 -1.1 29 29 A N B > S-C 32 0B 68 3,-0.9 3,-0.7 -3,-0.1 -1,-0.2 -0.953 83.9 -90.2-147.4 164.5 -6.1 -131.0 -2.2 30 30 A P T 3 S+ 0 0 124 0, 0.0 3,-0.1 0, 0.0 -2,-0.1 0.784 129.8 37.2 -43.4 -39.5 -7.5 -128.3 -4.7 31 31 A A T 3 S+ 0 0 37 -21,-0.2 2,-1.1 1,-0.2 -20,-1.0 0.793 106.5 76.8 -79.2 -33.0 -7.8 -125.7 -1.9 32 32 A Y E < +BC 10 29B 99 -3,-0.7 -4,-1.0 -22,-0.2 -3,-0.9 -0.654 43.3 148.1 -95.5 83.5 -4.6 -126.8 -0.0 33 33 A S E +B 9 0B 15 -24,-1.4 -24,-2.8 -2,-1.1 -25,-2.4 -0.932 27.1 162.3-105.2 104.9 -1.3 -125.5 -1.6 34 34 A Q E -B 7 0B 23 -2,-0.6 -8,-2.9 -27,-0.3 2,-1.7 -0.786 52.2 -93.0-115.9 157.6 1.1 -125.0 1.4 35 35 A b B D 25 0C 0 -29,-2.4 -30,-2.6 -32,-0.3 -10,-0.2 -0.576 360.0 360.0 -71.3 79.8 4.9 -124.7 1.8 36 36 A L 0 0 71 -12,-2.2 -2,-0.1 -2,-1.7 -13,-0.1 -0.788 360.0 360.0-127.0 360.0 5.7 -128.4 2.4