==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER BIOSYNTHETIC PROTEIN 16-SEP-05 2B22 . COMPND 2 MOLECULE: GENERAL CONTROL PROTEIN GCN4; . SOURCE 2 ORGANISM_SCIENTIFIC: SACCHAROMYCES CEREVISIAE; . AUTHOR Y.DENG,J.LIU,Q.ZHENG,D.ELIEZER,N.R.KALLENBACH,M.LU . 29 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3195.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 89.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 25 86.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A V > 0 0 157 0, 0.0 4,-2.5 0, 0.0 5,-0.3 0.000 360.0 360.0 360.0 -40.1 18.1 3.2 35.1 2 3 A K H > + 0 0 141 1,-0.3 4,-1.4 2,-0.2 5,-0.1 0.917 360.0 45.6 -69.7 -29.5 15.6 5.8 33.8 3 4 A Q H > S+ 0 0 168 1,-0.2 4,-1.9 2,-0.2 -1,-0.3 0.888 111.2 53.3 -72.6 -38.2 18.3 7.1 31.6 4 5 A L H > S+ 0 0 119 2,-0.2 4,-2.2 1,-0.2 -2,-0.2 0.812 106.2 50.9 -63.1 -37.9 19.2 3.6 30.5 5 6 A E H X S+ 0 0 77 -4,-2.5 4,-2.6 2,-0.2 -1,-0.2 0.842 107.0 54.5 -78.9 -29.5 15.7 2.6 29.5 6 7 A D H X S+ 0 0 66 -4,-1.4 4,-2.3 -5,-0.3 -2,-0.2 0.946 108.0 49.4 -65.5 -40.0 15.4 5.6 27.4 7 8 A V H X S+ 0 0 73 -4,-1.9 4,-2.5 2,-0.2 -2,-0.2 0.933 109.9 52.9 -55.6 -44.1 18.7 4.6 25.6 8 9 A V H X S+ 0 0 78 -4,-2.2 4,-2.1 1,-0.2 5,-0.2 0.937 106.9 52.6 -59.2 -45.0 17.1 1.2 25.1 9 10 A E H X S+ 0 0 105 -4,-2.6 4,-1.9 1,-0.2 -1,-0.2 0.933 110.3 45.9 -53.7 -55.3 14.1 2.7 23.6 10 11 A E H X S+ 0 0 158 -4,-2.3 4,-2.6 2,-0.2 -1,-0.2 0.856 111.3 53.4 -57.1 -38.4 16.1 4.7 21.1 11 12 A L H X S+ 0 0 115 -4,-2.5 4,-2.7 2,-0.2 5,-0.2 0.897 106.1 53.2 -62.0 -41.6 18.2 1.5 20.2 12 13 A L H X S+ 0 0 112 -4,-2.1 4,-1.7 -5,-0.2 -1,-0.2 0.920 112.8 44.5 -56.2 -51.9 15.0 -0.5 19.6 13 14 A S H X S+ 0 0 80 -4,-1.9 4,-2.5 -5,-0.2 -2,-0.2 0.913 112.8 49.4 -66.3 -41.0 13.8 2.1 17.2 14 15 A V H X S+ 0 0 90 -4,-2.6 4,-3.0 1,-0.2 5,-0.2 0.903 111.6 50.7 -59.8 -41.4 17.2 2.6 15.5 15 16 A N H X S+ 0 0 93 -4,-2.7 4,-2.1 -5,-0.2 -1,-0.2 0.922 111.7 46.2 -65.8 -38.5 17.4 -1.2 15.1 16 17 A Y H X S+ 0 0 141 -4,-1.7 4,-2.0 -5,-0.2 -1,-0.2 0.945 112.1 51.9 -67.1 -44.4 13.9 -1.5 13.5 17 18 A H H X S+ 0 0 117 -4,-2.5 4,-2.4 1,-0.2 5,-0.2 0.953 109.3 48.9 -61.6 -43.3 14.6 1.4 11.2 18 19 A L H X S+ 0 0 106 -4,-3.0 4,-3.0 1,-0.2 5,-0.2 0.912 108.3 55.4 -60.0 -39.5 17.9 -0.2 10.0 19 20 A E H X S+ 0 0 111 -4,-2.1 4,-1.9 -5,-0.2 -1,-0.2 0.928 108.3 47.2 -68.4 -28.1 16.1 -3.5 9.4 20 21 A N H X S+ 0 0 54 -4,-2.0 4,-1.9 2,-0.2 -1,-0.2 0.908 112.7 47.9 -76.0 -39.0 13.6 -1.8 7.1 21 22 A V H X S+ 0 0 66 -4,-2.4 4,-2.3 2,-0.2 -1,-0.2 0.901 111.8 50.9 -64.8 -43.1 16.2 0.1 5.2 22 23 A V H X S+ 0 0 77 -4,-3.0 4,-2.3 -5,-0.2 -2,-0.2 0.880 109.9 49.9 -58.7 -45.2 18.3 -3.1 4.7 23 24 A A H X S+ 0 0 41 -4,-1.9 4,-0.8 -5,-0.2 -2,-0.2 0.869 111.7 48.9 -55.6 -43.2 15.1 -5.1 3.4 24 25 A R H >X S+ 0 0 160 -4,-1.9 4,-2.1 -5,-0.2 3,-0.6 0.944 112.6 47.9 -63.5 -44.6 14.5 -2.2 1.0 25 26 A L H 3X S+ 0 0 97 -4,-2.3 4,-3.1 1,-0.2 -2,-0.2 0.861 106.5 58.0 -59.7 -41.8 18.2 -2.3 -0.2 26 27 A K H 3< S+ 0 0 159 -4,-2.3 -1,-0.2 1,-0.2 -2,-0.2 0.750 110.8 40.2 -71.6 -17.4 18.2 -6.0 -0.6 27 28 A K H << S+ 0 0 152 -4,-0.8 -1,-0.2 -3,-0.6 -2,-0.2 0.704 113.5 54.3-102.5 -27.2 15.4 -5.9 -3.0 28 29 A L H < 0 0 133 -4,-2.1 -2,-0.2 1,-0.2 -3,-0.2 0.962 360.0 360.0 -56.9 -50.9 16.7 -2.9 -4.8 29 30 A V < 0 0 149 -4,-3.1 -2,-0.2 -5,-0.1 -1,-0.2 0.578 360.0 360.0 -78.1 360.0 20.0 -4.6 -5.3