==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 19-SEP-05 2B38 . COMPND 2 MOLECULE: KALATA B8; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR N.L.DALY,R.J.CLARK,M.R.PLAN,D.J.CRAIK . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2487.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 48.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 19.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 12.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 14 0, 0.0 2,-2.5 0, 0.0 29,-0.2 0.000 360.0 360.0 360.0 51.7 4.8 1.3 -3.4 2 2 A G + 0 0 47 27,-0.9 2,-0.2 20,-0.1 22,-0.1 -0.146 360.0 137.0 -70.3 47.1 1.4 2.4 -4.6 3 3 A E - 0 0 101 -2,-2.5 20,-3.8 20,-0.1 2,-0.4 -0.514 50.2-124.5 -89.9 160.3 0.0 -1.1 -4.2 4 4 A T B -A 22 0A 52 18,-0.3 2,-1.3 -2,-0.2 3,-0.4 -0.846 7.8-132.7-109.2 145.3 -3.4 -1.8 -2.7 5 5 A b > + 0 0 1 16,-2.1 3,-0.7 -2,-0.4 5,-0.1 -0.343 53.0 143.8 -89.4 55.5 -4.2 -4.0 0.2 6 6 A L T 3 S+ 0 0 121 -2,-1.3 -1,-0.2 1,-0.3 4,-0.1 0.852 74.4 49.5 -62.1 -34.4 -7.0 -5.7 -1.6 7 7 A L T 3 S- 0 0 136 -3,-0.4 -1,-0.3 2,-0.2 -2,-0.1 0.635 133.3 -94.1 -78.8 -14.4 -6.1 -9.0 0.0 8 8 A G S < S+ 0 0 41 -3,-0.7 2,-0.3 13,-0.1 -3,-0.2 -0.103 98.5 30.6 128.3 -35.7 -6.1 -7.1 3.3 9 9 A T S S- 0 0 96 -5,-0.1 -2,-0.2 7,-0.0 2,-0.2 -0.989 87.9 -90.4-152.4 154.6 -2.4 -6.2 3.7 10 10 A c - 0 0 18 -2,-0.3 4,-0.1 5,-0.2 -5,-0.1 -0.444 21.1-161.5 -68.2 135.7 0.6 -5.4 1.5 11 11 A Y + 0 0 195 -2,-0.2 2,-0.2 2,-0.1 -1,-0.1 0.668 66.7 95.7 -88.3 -20.0 2.7 -8.3 0.4 12 12 A T S > S- 0 0 64 1,-0.1 3,-1.1 -11,-0.1 2,-0.2 -0.481 84.5-109.8 -74.0 140.7 5.6 -6.0 -0.4 13 13 A T T 3 S+ 0 0 123 1,-0.2 3,-0.1 -2,-0.2 -1,-0.1 -0.482 98.3 13.6 -73.4 136.6 8.2 -5.5 2.2 14 14 A G T 3 S+ 0 0 56 1,-0.3 2,-0.4 -2,-0.2 -1,-0.2 0.417 97.7 121.5 80.7 -2.1 8.4 -2.1 4.0 15 15 A a < - 0 0 13 -3,-1.1 2,-0.3 -5,-0.1 -1,-0.3 -0.806 44.3-164.3 -97.9 133.0 5.0 -1.2 2.6 16 16 A T E -B 24 0A 86 8,-2.2 8,-2.4 -2,-0.4 2,-0.7 -0.826 25.2-108.8-115.3 155.0 2.2 -0.3 5.0 17 17 A b E -B 23 0A 55 -2,-0.3 6,-0.2 6,-0.2 2,-0.2 -0.740 33.7-158.3 -87.9 115.1 -1.6 -0.1 4.5 18 18 A N E >> -B 22 0A 59 4,-3.2 3,-2.5 -2,-0.7 4,-1.2 -0.558 38.0 -93.2 -89.1 156.1 -2.8 3.5 4.6 19 19 A K T 34 S+ 0 0 190 1,-0.3 -1,-0.1 2,-0.2 -2,-0.0 0.701 126.5 62.6 -37.3 -35.6 -6.4 4.5 5.3 20 20 A Y T 34 S- 0 0 181 2,-0.2 -1,-0.3 1,-0.1 3,-0.1 0.291 122.6-109.2 -78.1 12.2 -7.2 4.5 1.6 21 21 A R T <4 S+ 0 0 135 -3,-2.5 -16,-2.1 1,-0.2 2,-0.4 0.861 80.6 131.3 60.5 38.5 -6.2 0.8 1.7 22 22 A V E < -AB 4 18A 17 -4,-1.2 -4,-3.2 -18,-0.2 -18,-0.3 -0.973 61.7-111.5-126.8 137.3 -3.1 1.7 -0.2 23 23 A c E - B 0 17A 0 -20,-3.8 2,-0.4 -2,-0.4 -6,-0.2 -0.410 31.7-175.3 -68.0 134.4 0.5 0.7 0.5 24 24 A T E + B 0 16A 23 -8,-2.4 -8,-2.2 -2,-0.2 5,-0.1 -0.998 14.6 177.6-133.2 127.1 2.9 3.5 1.6 25 25 A K S S- 0 0 94 3,-0.6 -1,-0.1 -2,-0.4 4,-0.1 0.911 91.0 -7.0 -90.8 -60.3 6.6 3.0 2.2 26 26 A D S S- 0 0 104 2,-0.3 3,-0.1 -10,-0.0 -2,-0.1 0.754 113.6 -84.4-101.3 -41.4 7.8 6.4 3.0 27 27 A G S S+ 0 0 50 1,-0.5 2,-0.3 -4,-0.1 4,-0.1 0.013 96.9 110.5 156.2 -26.0 4.5 8.2 2.4 28 28 A S - 0 0 59 1,-0.1 -3,-0.6 2,-0.1 -1,-0.5 -0.545 59.4-147.8 -76.5 135.6 4.8 8.8 -1.4 29 29 A V S S+ 0 0 96 -2,-0.3 2,-2.5 1,-0.2 -27,-0.9 0.865 93.5 74.0 -69.5 -34.2 2.5 6.8 -3.6 30 30 A L 0 0 173 1,-0.2 -1,-0.2 -29,-0.2 -2,-0.1 -0.384 360.0 360.0 -77.6 61.4 5.2 6.8 -6.2 31 31 A N 0 0 87 -2,-2.5 -1,-0.2 -8,-0.2 -2,-0.2 0.240 360.0 360.0-160.7 360.0 7.2 4.2 -4.3