==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER COLLAGEN FACIT XIV 15-FEB-99 1B9Q . COMPND 2 MOLECULE: PROTEIN (COLLAGEN ALPHA 1); . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.MONTSERRET,G.DELEAGE,F.PENIN . 34 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4123.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 70.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 47.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A C 0 0 166 0, 0.0 2,-1.8 0, 0.0 3,-0.3 0.000 360.0 360.0 360.0 150.2 -22.5 5.1 4.4 2 2 A A + 0 0 71 1,-0.2 4,-0.4 2,-0.1 3,-0.4 -0.514 360.0 147.4 -85.3 73.3 -21.2 1.5 5.0 3 3 A V S S+ 0 0 96 -2,-1.8 6,-0.8 1,-0.2 -1,-0.2 0.790 79.1 24.5 -79.4 -28.1 -18.4 1.7 2.4 4 4 A E S S+ 0 0 145 -3,-0.3 -1,-0.2 4,-0.2 -2,-0.1 -0.140 102.7 85.6-129.0 38.7 -16.0 -0.7 4.4 5 5 A L S S- 0 0 149 -3,-0.4 -2,-0.1 2,-0.2 -1,-0.0 0.842 113.9 -6.8-102.0 -55.7 -18.5 -2.7 6.5 6 6 A R S S+ 0 0 199 -4,-0.4 -3,-0.1 1,-0.2 -2,-0.1 0.769 143.1 22.4-110.1 -46.6 -19.6 -5.6 4.1 7 7 A S - 0 0 71 -5,-0.4 2,-1.8 2,-0.0 -1,-0.2 -0.886 67.3-156.5-128.3 101.2 -18.0 -4.7 0.7 8 8 A P > - 0 0 64 0, 0.0 4,-1.2 0, 0.0 -4,-0.2 -0.538 19.0-162.0 -77.3 82.9 -14.9 -2.4 0.9 9 9 A G T 4 S- 0 0 51 -2,-1.8 2,-1.9 -6,-0.8 -2,-0.0 -0.451 70.9 -3.1 -68.2 137.0 -15.1 -0.9 -2.6 10 10 A I T >> S+ 0 0 126 1,-0.2 4,-3.5 -2,-0.1 3,-1.2 -0.220 115.6 86.0 74.9 -46.7 -11.8 0.7 -3.8 11 11 A S H 3> S+ 0 0 27 -2,-1.9 4,-1.3 1,-0.3 5,-0.2 0.859 86.0 53.4 -52.7 -38.2 -10.1 0.1 -0.4 12 12 A R H 3< S+ 0 0 220 -4,-1.2 4,-0.3 1,-0.2 -1,-0.3 0.794 120.2 33.8 -69.6 -25.2 -9.0 -3.4 -1.4 13 13 A F H <> S+ 0 0 128 -3,-1.2 4,-1.6 2,-0.1 -2,-0.2 0.748 108.4 64.5 -99.8 -30.0 -7.3 -1.9 -4.6 14 14 A R H X S+ 0 0 134 -4,-3.5 4,-2.0 1,-0.2 -3,-0.2 0.899 102.6 51.2 -61.2 -38.9 -6.1 1.5 -3.1 15 15 A R H X S+ 0 0 149 -4,-1.3 4,-3.3 -5,-0.3 -1,-0.2 0.868 104.8 56.4 -67.1 -35.4 -3.8 -0.4 -0.7 16 16 A K H > S+ 0 0 153 -4,-0.3 4,-1.0 2,-0.2 -1,-0.2 0.888 107.3 49.2 -64.6 -36.2 -2.3 -2.4 -3.7 17 17 A I H X S+ 0 0 79 -4,-1.6 4,-1.6 2,-0.2 3,-0.5 0.943 115.1 44.4 -66.8 -45.7 -1.4 0.9 -5.4 18 18 A A H X S+ 0 0 31 -4,-2.0 4,-3.1 1,-0.2 5,-0.4 0.902 107.3 58.5 -65.8 -41.0 0.2 2.1 -2.1 19 19 A K H X S+ 0 0 149 -4,-3.3 4,-0.8 1,-0.2 -1,-0.2 0.789 107.6 49.4 -60.7 -25.3 2.0 -1.3 -1.6 20 20 A R H X S+ 0 0 186 -4,-1.0 4,-0.7 -3,-0.5 -1,-0.2 0.879 119.0 35.6 -81.4 -39.7 3.7 -0.7 -5.0 21 21 A S H >X S+ 0 0 81 -4,-1.6 4,-1.5 2,-0.2 3,-0.6 0.938 116.2 51.9 -79.3 -49.2 4.9 2.9 -4.2 22 22 A I H 3X S+ 0 0 85 -4,-3.1 4,-2.6 1,-0.2 5,-0.2 0.871 102.7 60.7 -56.8 -38.7 5.7 2.5 -0.5 23 23 A K H 3X S+ 0 0 110 -4,-0.8 4,-2.4 -5,-0.4 -1,-0.2 0.912 104.3 49.7 -57.2 -40.8 7.9 -0.6 -1.2 24 24 A T H << S+ 0 0 89 -4,-0.7 -1,-0.2 -3,-0.6 -2,-0.2 0.897 109.7 51.4 -64.9 -38.1 10.1 1.6 -3.4 25 25 A L H >X S+ 0 0 119 -4,-1.5 4,-0.7 1,-0.2 3,-0.6 0.939 111.1 47.5 -63.9 -45.9 10.3 4.2 -0.5 26 26 A E H 3X S+ 0 0 95 -4,-2.6 2,-1.3 1,-0.3 4,-0.9 0.899 107.1 58.1 -62.2 -41.0 11.3 1.4 1.9 27 27 A H H 3< S+ 0 0 99 -4,-2.4 -1,-0.3 -5,-0.2 -2,-0.1 -0.270 98.1 67.8 -85.8 52.0 14.0 0.1 -0.6 28 28 A K H <4 S+ 0 0 148 -2,-1.3 -2,-0.2 -3,-0.6 -1,-0.1 0.518 110.2 15.9-131.3 -70.8 15.7 3.5 -0.6 29 29 A R H < S+ 0 0 181 -4,-0.7 3,-0.4 1,-0.2 -2,-0.1 0.746 133.8 45.3 -83.2 -22.2 17.5 4.5 2.7 30 30 A E S < S+ 0 0 108 -4,-0.9 -1,-0.2 1,-0.2 -3,-0.1 0.531 109.3 56.7 -95.8 -7.0 17.3 0.8 4.0 31 31 A N S S+ 0 0 111 -5,-0.2 2,-0.3 -3,-0.0 -1,-0.2 -0.224 95.5 78.3-115.5 43.5 18.5 -0.7 0.6 32 32 A A S S- 0 0 56 -3,-0.4 2,-0.1 2,-0.1 -4,-0.1 -0.987 97.8 -27.2-151.9 139.6 21.8 1.2 0.3 33 33 A K 0 0 207 -2,-0.3 -3,-0.0 1,-0.1 -4,-0.0 -0.365 360.0 360.0 56.7-123.3 25.4 1.0 1.9 34 34 A E 0 0 240 -2,-0.1 -1,-0.1 -3,-0.0 -2,-0.1 0.410 360.0 360.0-150.9 360.0 25.0 -0.7 5.4