==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 11-OCT-05 2B9K . COMPND 2 MOLECULE: ANTIMICROBIAL PEPTIDE LCI; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS SUBTILIS; . AUTHOR B.XIA,W.GONG,G.LU . 47 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3695.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 55.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 20 42.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 8.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 6.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 102 0, 0.0 40,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 137.0 -6.0 -4.9 2.3 2 2 A I - 0 0 97 40,-0.1 2,-0.3 1,-0.0 40,-0.3 -0.129 360.0-152.5 -60.6 164.5 -3.7 -5.4 -0.7 3 3 A K E -A 41 0A 95 38,-3.0 38,-2.5 41,-0.1 2,-0.4 -0.875 13.0-130.1-127.9 162.8 -3.8 -8.2 -3.3 4 4 A L E -A 40 0A 138 -2,-0.3 2,-0.3 36,-0.2 36,-0.2 -0.962 32.6-174.0-117.1 134.3 -1.0 -9.7 -5.4 5 5 A V E -A 39 0A 9 34,-2.0 34,-2.1 -2,-0.4 2,-0.3 -0.948 17.3-175.0-139.8 147.2 -1.9 -10.0 -9.1 6 6 A Q E +A 38 0A 80 -2,-0.3 32,-0.2 32,-0.2 -2,-0.0 -0.969 23.6 133.0-145.3 126.1 -0.3 -11.5 -12.3 7 7 A S E > -A 37 0A 14 30,-2.1 30,-2.0 -2,-0.3 3,-0.8 -0.908 54.2-120.9-168.1 153.3 -1.6 -11.2 -16.0 8 8 A P T 3 S+ 0 0 97 0, 0.0 30,-0.1 0, 0.0 -1,-0.1 0.755 106.5 62.9 -70.2 -24.7 -0.2 -10.4 -19.5 9 9 A N T 3 S- 0 0 95 37,-0.2 3,-0.2 28,-0.1 38,-0.0 0.707 82.8-154.6 -76.3 -19.3 -2.6 -7.4 -20.0 10 10 A G < - 0 0 3 -3,-0.8 2,-0.2 1,-0.2 28,-0.1 0.763 17.2-161.0 51.0 30.5 -1.2 -5.3 -17.1 11 11 A N - 0 0 70 35,-0.1 2,-0.8 1,-0.1 -1,-0.2 -0.240 8.8-143.4 -52.7 105.7 -4.6 -3.5 -16.9 12 12 A F + 0 0 119 -2,-0.2 -1,-0.1 -3,-0.2 3,-0.1 -0.643 22.2 178.7 -74.5 105.5 -3.9 -0.3 -14.9 13 13 A A - 0 0 36 -2,-0.8 2,-2.0 1,-0.2 -1,-0.2 0.560 12.2-165.3 -85.6 -10.3 -7.1 0.1 -12.8 14 14 A A - 0 0 38 10,-0.1 11,-1.9 2,-0.0 2,-0.3 -0.400 57.0 -28.4 54.1 -72.1 -5.9 3.4 -11.0 15 15 A S E +B 24 0A 67 -2,-2.0 9,-0.3 9,-0.3 2,-0.3 -0.972 58.4 176.8-165.5 162.0 -8.6 3.4 -8.2 16 16 A F E -B 23 0A 126 7,-2.2 7,-2.6 -2,-0.3 2,-0.4 -0.932 24.9-124.6-159.0 175.3 -12.2 2.3 -7.4 17 17 A V E +B 22 0A 95 -2,-0.3 2,-0.3 5,-0.2 5,-0.2 -0.996 33.5 162.2-135.7 130.8 -14.8 2.2 -4.6 18 18 A L E > +B 21 0A 99 3,-2.4 3,-1.5 -2,-0.4 -2,-0.1 -0.973 63.2 0.8-152.2 137.9 -16.5 -1.1 -3.5 19 19 A D T 3 S- 0 0 147 -2,-0.3 3,-0.1 1,-0.3 -1,-0.1 0.881 127.5 -57.6 45.7 50.1 -18.4 -2.2 -0.3 20 20 A G T 3 S+ 0 0 86 1,-0.2 2,-0.3 -3,-0.0 -1,-0.3 0.703 118.4 108.1 61.8 23.2 -18.0 1.3 1.3 21 21 A T E < -B 18 0A 72 -3,-1.5 -3,-2.4 2,-0.0 2,-0.3 -0.940 67.0-125.9-130.7 145.1 -14.2 1.0 1.0 22 22 A K E -B 17 0A 146 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -0.716 21.2-161.1 -95.3 151.0 -11.8 2.9 -1.4 23 23 A W E +B 16 0A 54 -7,-2.6 -7,-2.2 -2,-0.3 20,-0.3 -0.961 15.4 167.6-138.2 139.2 -9.3 0.9 -3.6 24 24 A I E -BC 15 42A 83 18,-1.3 18,-1.8 -2,-0.3 -9,-0.3 -0.969 35.4 -84.1-155.1 158.2 -6.1 2.3 -5.3 25 25 A F E + C 0 41A 84 -11,-1.9 16,-0.1 -2,-0.3 3,-0.1 -0.212 36.3 163.2 -55.2 156.9 -2.8 1.5 -7.1 26 26 A K E - 0 0 126 14,-0.5 2,-0.3 1,-0.1 15,-0.2 0.356 59.6 -23.7-140.5 -61.5 0.4 0.6 -5.2 27 27 A S E + C 0 40A 41 13,-2.8 13,-1.9 2,-0.0 2,-0.3 -0.991 49.6 173.5-154.2 147.3 3.0 -1.1 -7.6 28 28 A K E + C 0 39A 62 -2,-0.3 2,-0.3 11,-0.2 11,-0.3 -0.980 4.3 171.5-147.3 160.9 3.4 -3.0 -10.9 29 29 A Y E - C 0 38A 134 9,-2.7 9,-2.7 -2,-0.3 2,-0.6 -0.956 38.0-104.0-153.9 162.6 6.2 -4.3 -13.1 30 30 A Y E - C 0 37A 113 -2,-0.3 2,-1.2 7,-0.2 7,-0.3 -0.866 26.2-148.2 -94.0 123.2 6.7 -6.6 -16.2 31 31 A D E >>> - C 0 36A 37 5,-2.9 3,-2.5 -2,-0.6 4,-2.1 -0.723 15.3-175.4 -93.6 82.1 8.2 -9.9 -15.1 32 32 A S T 345S+ 0 0 95 -2,-1.2 -1,-0.2 1,-0.3 5,-0.1 0.734 77.0 69.7 -54.4 -25.7 10.2 -10.7 -18.3 33 33 A S T 345S+ 0 0 111 1,-0.2 -1,-0.3 -3,-0.1 -2,-0.0 0.688 118.5 20.6 -63.9 -20.2 11.1 -14.1 -16.8 34 34 A K T <45S- 0 0 147 -3,-2.5 -2,-0.2 2,-0.2 -1,-0.2 0.507 105.0-121.4-126.8 -16.6 7.4 -15.2 -17.3 35 35 A G T <5S+ 0 0 32 -4,-2.1 2,-0.3 1,-0.3 -3,-0.2 0.886 75.7 95.1 74.7 40.1 6.2 -12.6 -19.9 36 36 A Y E