==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GLYCOLYSIS 20-FEB-92 1BAL . COMPND 2 MOLECULE: DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR G.M.CLORE,M.A.ROBIEN,A.M.GRONENBORN . 51 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4953.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 35.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 15.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Y 0 0 212 0, 0.0 7,-0.1 0, 0.0 6,-0.1 0.000 360.0 360.0 360.0 178.1 20.9 -2.1 5.9 2 2 A A + 0 0 92 5,-0.1 2,-0.2 6,-0.0 5,-0.1 0.253 360.0 20.5-142.6 7.6 23.2 -3.7 3.3 3 3 A S S S- 0 0 63 3,-0.2 0, 0.0 4,-0.1 0, 0.0 -0.682 91.4 -82.3-151.6-154.4 25.5 -0.8 2.3 4 4 A L S S+ 0 0 183 -2,-0.2 -1,-0.1 -3,-0.1 0, 0.0 0.816 125.2 26.4 -95.2 -37.0 26.7 2.6 3.5 5 5 A E S S+ 0 0 170 2,-0.1 -1,-0.0 -3,-0.0 0, 0.0 0.741 92.8 113.5 -96.3 -27.5 23.8 4.7 2.4 6 6 A E - 0 0 89 1,-0.1 -3,-0.2 -5,-0.0 2,-0.1 -0.131 58.6-146.1 -45.2 134.6 21.1 2.0 2.6 7 7 A Q - 0 0 81 1,-0.2 -5,-0.1 -6,-0.1 -4,-0.1 -0.267 15.7-100.9 -95.7-173.3 18.7 2.8 5.3 8 8 A N S S+ 0 0 98 1,-0.1 -1,-0.2 -7,-0.1 -6,-0.0 0.587 89.1 13.8 -79.6-124.9 16.8 0.4 7.7 9 9 A N S S- 0 0 133 1,-0.1 -1,-0.1 -8,-0.0 -2,-0.1 -0.034 71.0-153.7 -46.8 153.9 13.1 -0.4 7.1 10 10 A D - 0 0 140 1,-0.2 2,-0.2 -3,-0.1 -1,-0.1 0.503 12.3-127.4-101.2-115.0 11.8 0.5 3.6 11 11 A A - 0 0 97 1,-0.4 -1,-0.2 0, 0.0 2,-0.0 -0.596 46.3 -26.3-165.8-130.6 8.2 1.3 2.8 12 12 A L - 0 0 102 -2,-0.2 -1,-0.4 1,-0.0 3,-0.0 -0.044 57.1-122.9 -90.5-162.6 5.5 0.1 0.3 13 13 A S > - 0 0 73 1,-0.1 3,-1.6 -2,-0.0 4,-0.1 -0.937 23.0-106.4-142.1 164.7 6.0 -1.3 -3.2 14 14 A P G > S+ 0 0 122 0, 0.0 3,-2.4 0, 0.0 4,-0.5 0.893 113.5 69.4 -59.0 -40.7 4.9 -0.6 -6.8 15 15 A A G 3> S+ 0 0 57 1,-0.3 4,-2.4 2,-0.2 5,-0.2 0.715 72.8 92.7 -52.7 -17.1 2.4 -3.5 -6.7 16 16 A I G <4 S+ 0 0 40 -3,-1.6 -1,-0.3 1,-0.2 4,-0.2 0.789 88.8 46.0 -49.5 -25.6 0.5 -1.3 -4.3 17 17 A R T X4 S+ 0 0 136 -3,-2.4 3,-1.4 1,-0.1 4,-0.3 0.949 116.0 39.4 -83.3 -55.5 -1.4 -0.1 -7.4 18 18 A R T >> S+ 0 0 200 -4,-0.5 4,-2.5 1,-0.3 3,-1.6 0.619 92.2 93.7 -69.6 -8.9 -2.1 -3.4 -9.1 19 19 A L H 3X S+ 0 0 36 -4,-2.4 4,-1.4 1,-0.3 -1,-0.3 0.824 77.1 61.7 -53.3 -29.5 -2.8 -4.8 -5.6 20 20 A L H <4>S+ 0 0 35 -3,-1.4 5,-2.9 -4,-0.2 -1,-0.3 0.852 109.6 39.5 -67.0 -32.4 -6.5 -3.9 -6.3 21 21 A A H X45S+ 0 0 58 -3,-1.6 3,-1.3 -4,-0.3 -2,-0.2 0.853 104.2 66.8 -84.7 -36.6 -6.5 -6.3 -9.3 22 22 A E H 3<5S+ 0 0 133 -4,-2.5 -2,-0.2 1,-0.3 -1,-0.2 0.893 113.7 32.9 -50.9 -40.8 -4.4 -9.0 -7.6 23 23 A H T 3<5S- 0 0 68 -4,-1.4 -1,-0.3 -5,-0.2 -2,-0.2 0.424 112.4-120.6 -95.9 1.2 -7.3 -9.6 -5.1 24 24 A N T < 5 + 0 0 138 -3,-1.3 2,-0.4 1,-0.2 -3,-0.2 0.907 66.0 141.5 62.2 40.4 -9.9 -8.8 -7.8 25 25 A L < - 0 0 57 -5,-2.9 2,-0.3 -6,-0.2 -1,-0.2 -0.936 46.1-137.1-117.7 137.8 -11.2 -5.9 -5.6 26 26 A D > - 0 0 123 -2,-0.4 3,-1.0 1,-0.1 4,-0.4 -0.717 11.2-137.7 -93.4 141.7 -12.4 -2.5 -6.9 27 27 A A T 3 S+ 0 0 43 -2,-0.3 3,-0.3 1,-0.2 -1,-0.1 0.569 89.0 93.5 -72.3 -5.0 -11.4 0.7 -5.1 28 28 A S T 3 S+ 0 0 110 1,-0.3 -1,-0.2 3,-0.1 -3,-0.0 0.903 90.4 40.9 -54.3 -41.2 -15.0 1.8 -5.7 29 29 A A S < S+ 0 0 54 -3,-1.0 -1,-0.3 2,-0.0 -2,-0.2 0.706 115.4 64.6 -80.1 -18.7 -15.8 0.5 -2.2 30 30 A I S S- 0 0 20 -4,-0.4 2,-0.4 -3,-0.3 14,-0.1 -0.465 73.8-143.5 -97.6 173.5 -12.6 1.8 -0.8 31 31 A K - 0 0 140 -2,-0.1 2,-1.2 12,-0.1 9,-0.2 -0.995 8.8-141.7-141.9 134.1 -11.4 5.5 -0.5 32 32 A G + 0 0 33 -2,-0.4 7,-0.1 1,-0.1 2,-0.1 -0.667 28.7 165.3 -95.5 83.6 -8.0 7.1 -0.9 33 33 A T + 0 0 105 -2,-1.2 -1,-0.1 3,-0.1 5,-0.1 -0.044 27.1 145.0 -87.7 35.4 -8.0 9.7 1.9 34 34 A G S > S- 0 0 17 1,-0.1 3,-1.3 -2,-0.1 5,-0.1 -0.080 73.3 -91.7 -64.9 172.9 -4.2 10.1 1.5 35 35 A V T 3 S+ 0 0 166 1,-0.3 -1,-0.1 3,-0.1 -2,-0.0 0.667 129.0 18.2 -62.3 -12.0 -2.5 13.5 2.0 36 36 A G T 3 S- 0 0 68 2,-0.2 -1,-0.3 -4,-0.0 3,-0.1 -0.098 123.0 -84.3-151.3 43.2 -3.0 13.9 -1.8 37 37 A G S < S+ 0 0 54 -3,-1.3 2,-0.6 1,-0.2 -2,-0.1 0.424 80.7 151.3 68.5 -7.1 -5.7 11.3 -2.9 38 38 A R - 0 0 179 1,-0.1 -1,-0.2 -5,-0.1 2,-0.2 -0.413 54.6-120.5 -60.4 106.9 -2.8 8.9 -3.0 39 39 A L - 0 0 25 -2,-0.6 -7,-0.1 -3,-0.1 -1,-0.1 -0.288 38.3-164.2 -51.8 112.8 -4.5 5.6 -2.3 40 40 A T > - 0 0 43 -9,-0.2 4,-0.5 -2,-0.2 3,-0.4 -0.297 29.9-113.8 -92.7-177.9 -2.7 4.4 0.8 41 41 A R H > S+ 0 0 100 1,-0.2 4,-1.1 2,-0.2 -1,-0.1 0.615 108.0 72.8 -92.0 -13.4 -2.6 0.9 2.4 42 42 A E H 4 S+ 0 0 112 1,-0.2 4,-0.4 2,-0.2 -1,-0.2 0.584 96.7 52.7 -76.2 -7.2 -4.5 2.0 5.5 43 43 A D H 4 S+ 0 0 24 -3,-0.4 -1,-0.2 2,-0.1 -2,-0.2 0.803 112.4 40.0 -95.3 -35.5 -7.6 2.2 3.3 44 44 A V H >X S+ 0 0 9 -4,-0.5 4,-1.4 1,-0.2 3,-0.7 0.614 100.8 76.3 -87.8 -12.3 -7.5 -1.3 1.8 45 45 A E T 3< S+ 0 0 117 -4,-1.1 2,-1.8 1,-0.3 3,-0.2 0.935 86.8 59.2 -63.9 -45.1 -6.4 -2.8 5.2 46 46 A K T 34 S+ 0 0 177 -4,-0.4 -1,-0.3 1,-0.2 -2,-0.1 -0.119 110.4 45.3 -77.3 44.4 -9.9 -2.5 6.6 47 47 A H T <4 S+ 0 0 100 -2,-1.8 -1,-0.2 -3,-0.7 -2,-0.2 0.412 104.8 51.0-149.7 -43.2 -11.2 -4.7 3.8 48 48 A L S < S- 0 0 61 -4,-1.4 2,-0.2 -3,-0.2 -3,-0.1 0.672 89.0-106.4 -73.7-121.1 -8.9 -7.7 3.3 49 49 A A - 0 0 89 1,-0.1 -1,-0.2 -3,-0.0 -2,-0.1 -0.595 43.5 -49.5-148.8-149.3 -7.9 -9.8 6.3 50 50 A K 0 0 199 -2,-0.2 -1,-0.1 1,-0.1 0, 0.0 -0.406 360.0 360.0 -93.1 173.8 -5.0 -10.6 8.6 51 51 A A 0 0 172 -2,-0.1 -1,-0.1 0, 0.0 0, 0.0 0.065 360.0 360.0-144.4 360.0 -1.4 -11.4 7.7