==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ALLERGEN 24-APR-98 1BBG . COMPND 2 MOLECULE: POLLEN ALLERGEN 5; . SOURCE 2 ORGANISM_SCIENTIFIC: AMBROSIA TRIFIDA; . AUTHOR G.L.WARREN,C.J.TUNER,G.A.PETSKO,A.T.BRUNGER . 40 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2869.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 57.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 17.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 157 0, 0.0 2,-0.3 0, 0.0 39,-0.1 0.000 360.0 360.0 360.0 62.9 9.1 2.9 6.0 2 2 A D + 0 0 143 38,-0.2 2,-0.3 37,-0.1 35,-0.0 -0.915 360.0 142.9-155.9-177.8 11.2 0.8 3.5 3 3 A G - 0 0 42 -2,-0.3 2,-0.2 17,-0.1 37,-0.1 -0.988 41.7 -81.0 166.1-159.0 12.0 -2.8 2.4 4 4 A L - 0 0 131 -2,-0.3 2,-0.3 35,-0.1 16,-0.2 -0.712 31.5-133.1-127.7-179.7 12.7 -4.9 -0.7 5 5 A a - 0 0 47 -2,-0.2 2,-0.3 14,-0.2 14,-0.2 -0.985 13.0-171.6-140.9 152.7 10.6 -6.6 -3.5 6 6 A Y E -A 18 0A 68 12,-2.1 12,-1.9 -2,-0.3 2,-0.4 -0.875 20.2-125.4-134.3 165.6 10.4 -10.0 -5.2 7 7 A E E +A 17 0A 154 -2,-0.3 2,-0.3 10,-0.2 10,-0.2 -0.929 62.0 61.7-121.5 144.2 8.4 -11.3 -8.2 8 8 A G S S- 0 0 35 8,-0.6 7,-0.6 -2,-0.4 8,-0.2 -0.894 92.1 -66.2 153.5-121.4 6.0 -14.2 -8.5 9 9 A T S > S+ 0 0 78 -2,-0.3 3,-1.2 5,-0.1 5,-0.2 0.133 78.7 121.1-155.5 23.7 2.7 -14.9 -6.7 10 10 A N T 3 S+ 0 0 121 1,-0.3 -3,-0.0 3,-0.2 4,-0.0 0.643 87.3 39.7 -74.1 -8.0 3.5 -15.5 -2.9 11 11 A b T 3 S- 0 0 26 16,-0.0 17,-0.3 0, 0.0 -1,-0.3 0.060 126.6 -92.9-124.9 25.4 1.2 -12.6 -2.0 12 12 A G S < S+ 0 0 62 -3,-1.2 2,-1.5 1,-0.2 -2,-0.1 0.642 86.7 135.7 75.5 9.7 -1.6 -13.3 -4.4 13 13 A K > + 0 0 1 3,-0.1 3,-0.7 2,-0.1 2,-0.6 -0.318 27.9 172.6 -88.7 57.3 0.2 -10.8 -6.8 14 14 A V T 3 S+ 0 0 103 -2,-1.5 -5,-0.1 1,-0.3 3,-0.1 -0.512 75.8 6.3 -66.6 111.4 -0.2 -13.1 -9.8 15 15 A G T 3 S+ 0 0 67 -7,-0.6 -1,-0.3 -2,-0.6 -6,-0.1 0.051 132.7 56.7 101.0 -27.1 1.0 -10.9 -12.7 16 16 A K S < S- 0 0 89 -3,-0.7 -8,-0.6 -8,-0.2 -1,-0.3 0.140 89.5-102.6-109.6-132.4 2.2 -8.1 -10.4 17 17 A Y E -AB 7 29A 68 12,-2.0 12,-1.3 -10,-0.2 2,-0.3 -0.917 19.2-133.0-150.2 177.1 4.7 -8.3 -7.5 18 18 A c E -AB 6 28A 0 -12,-1.9 -12,-2.1 -2,-0.3 2,-0.4 -0.941 5.7-152.8-137.4 159.6 4.9 -8.5 -3.7 19 19 A d E + B 0 27A 9 8,-1.5 8,-1.6 -2,-0.3 -14,-0.2 -0.957 31.0 134.6-137.6 121.5 7.0 -6.8 -0.9 20 20 A S - 0 0 22 -2,-0.4 -17,-0.1 -16,-0.2 3,-0.1 -0.802 38.2-153.6-165.7 119.1 7.8 -8.2 2.6 21 21 A P S S+ 0 0 79 0, 0.0 -16,-0.1 0, 0.0 -18,-0.0 0.383 106.0 9.7 -76.8 6.8 11.2 -8.2 4.4 22 22 A I S S- 0 0 120 0, 0.0 -2,-0.0 0, 0.0 0, 0.0 0.227 110.8 -96.8-165.4 10.5 10.0 -11.3 6.3 23 23 A G S S+ 0 0 43 -3,-0.1 -3,-0.0 1,-0.0 -4,-0.0 0.626 100.8 110.4 73.8 10.3 6.9 -12.4 4.5 24 24 A K S S+ 0 0 133 1,-0.1 -4,-0.1 3,-0.0 -1,-0.0 0.844 79.4 37.1 -85.1 -34.8 5.0 -10.6 7.3 25 25 A Y S S+ 0 0 143 2,-0.1 -5,-0.2 -7,-0.0 3,-0.1 0.852 73.7 178.9 -85.8 -35.8 3.7 -7.7 5.1 26 26 A b + 0 0 52 1,-0.2 2,-0.6 -8,-0.1 -6,-0.2 0.885 21.0 161.1 32.4 62.2 3.0 -9.8 2.0 27 27 A V E -B 19 0A 44 -8,-1.6 -8,-1.5 12,-0.0 2,-0.3 -0.937 15.0-176.2-114.7 118.8 1.7 -6.6 0.3 28 28 A c E +B 18 0A 28 -2,-0.6 2,-0.3 -17,-0.3 -10,-0.2 -0.764 8.7 177.9-115.6 162.7 1.5 -6.7 -3.5 29 29 A Y E -B 17 0A 61 -12,-1.3 -12,-2.0 -2,-0.3 6,-0.1 -0.945 38.6-114.8-149.2 170.1 0.6 -4.3 -6.3 30 30 A D S S+ 0 0 94 -2,-0.3 2,-1.2 -14,-0.2 3,-0.1 0.923 104.4 65.4 -79.7 -41.4 0.5 -4.2 -10.1 31 31 A S S >> S- 0 0 44 1,-0.2 3,-2.0 2,-0.1 4,-1.8 -0.636 77.8-151.0 -78.5 98.3 3.3 -1.5 -10.5 32 32 A K H >> S+ 0 0 128 -2,-1.2 4,-1.5 1,-0.3 3,-0.9 0.919 105.1 58.6 -37.7 -38.2 6.3 -3.5 -9.2 33 33 A A H 3> S+ 0 0 59 1,-0.3 4,-3.4 2,-0.2 -1,-0.3 0.946 95.3 58.3 -56.1 -45.0 7.2 0.1 -8.3 34 34 A I H <4>S+ 0 0 36 -3,-2.0 5,-2.5 3,-0.2 -1,-0.3 0.854 101.4 61.0 -55.8 -24.1 4.0 0.2 -6.3 35 35 A a H <5S+ 0 0 124 -4,-3.4 3,-1.4 -5,-0.2 -3,-0.2 0.993 130.2 21.2 -59.1 -80.7 6.8 2.7 -3.5 38 38 A N H 345S+ 0 0 65 1,-0.3 -3,-0.2 -5,-0.3 -1,-0.2 0.887 115.2 70.6 -60.5 -37.0 3.4 2.0 -2.0 39 39 A d H 3<< 0 0 26 -5,-2.5 -1,-0.3 -4,-0.9 -2,-0.2 0.831 360.0 360.0 -51.2 -28.9 4.8 -1.1 -0.3 40 40 A T << 0 0 84 -3,-1.4 -38,-0.2 -4,-0.9 -2,-0.2 0.974 360.0 360.0 -76.9 360.0 6.6 1.4 2.0