==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GLYCOLYSIS 20-FEB-92 1BBL . COMPND 2 MOLECULE: DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR G.M.CLORE,M.A.ROBIEN,A.M.GRONENBORN . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3501.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 62.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 27.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 12 A L 0 0 144 0, 0.0 28,-0.0 0, 0.0 29,-0.0 0.000 360.0 360.0 360.0 179.2 2.8 3.3 -1.1 2 13 A S >> - 0 0 70 1,-0.0 3,-2.0 0, 0.0 4,-0.5 -0.955 360.0-104.5-144.3 163.0 4.8 0.7 -3.0 3 14 A P T 34 S+ 0 0 122 0, 0.0 4,-0.5 0, 0.0 3,-0.1 0.673 121.9 54.6 -61.6 -15.4 5.3 -0.6 -6.6 4 15 A A T 3> S+ 0 0 60 1,-0.2 4,-1.0 2,-0.1 0, 0.0 0.493 84.0 84.2 -97.6 -3.7 3.1 -3.6 -5.6 5 16 A I H <> S+ 0 0 29 -3,-2.0 4,-0.8 2,-0.2 -1,-0.2 0.891 89.8 51.1 -66.0 -37.0 0.1 -1.4 -4.5 6 17 A R H >X S+ 0 0 207 -4,-0.5 3,-0.9 1,-0.2 4,-0.9 0.950 113.3 42.9 -65.5 -48.0 -1.2 -1.1 -8.0 7 18 A R H 3> S+ 0 0 194 -4,-0.5 4,-1.1 1,-0.2 -1,-0.2 0.655 99.7 76.5 -72.6 -12.6 -1.1 -4.8 -8.7 8 19 A L H 3X S+ 0 0 43 -4,-1.0 4,-1.3 1,-0.2 -1,-0.2 0.849 97.2 44.9 -66.5 -31.8 -2.6 -5.3 -5.2 9 20 A L H <<>S+ 0 0 48 -3,-0.9 5,-1.3 -4,-0.8 4,-0.4 0.814 115.6 46.0 -81.2 -30.3 -6.0 -4.2 -6.5 10 21 A A H <5S+ 0 0 74 -4,-0.9 -2,-0.2 3,-0.2 -1,-0.2 0.569 110.0 57.3 -87.2 -8.2 -5.7 -6.4 -9.6 11 22 A E H <5S+ 0 0 137 -4,-1.1 -2,-0.2 -5,-0.1 -3,-0.2 0.893 119.6 25.2 -87.5 -44.9 -4.5 -9.3 -7.6 12 23 A H T <5S- 0 0 80 -4,-1.3 -2,-0.2 -5,-0.2 -3,-0.1 0.416 105.4-127.9 -97.9 0.9 -7.4 -9.6 -5.2 13 24 A N T 5 + 0 0 129 -4,-0.4 2,-0.4 1,-0.2 -3,-0.2 0.943 46.6 160.7 50.8 89.6 -9.8 -8.0 -7.6 14 25 A L < - 0 0 53 -5,-1.3 2,-0.8 3,-0.0 -1,-0.2 -0.999 41.6-126.5-143.2 139.2 -11.4 -5.2 -5.6 15 26 A D > - 0 0 126 -2,-0.4 3,-1.9 1,-0.2 4,-0.4 -0.739 12.0-161.7 -87.7 110.0 -13.3 -2.0 -6.5 16 27 A A G > S+ 0 0 38 -2,-0.8 3,-1.0 1,-0.3 -1,-0.2 0.711 84.3 79.6 -62.4 -16.5 -11.6 0.9 -4.8 17 28 A S G 3 S+ 0 0 122 1,-0.3 -1,-0.3 3,-0.1 -2,-0.0 0.818 92.4 49.1 -61.4 -28.0 -14.9 2.8 -5.5 18 29 A A G < S+ 0 0 80 -3,-1.9 2,-0.3 2,-0.1 -1,-0.3 0.631 102.2 78.3 -85.8 -13.1 -16.4 1.0 -2.5 19 30 A I S < S- 0 0 27 -3,-1.0 2,-0.6 -4,-0.4 14,-0.1 -0.733 80.8-128.3 -97.4 145.3 -13.4 1.9 -0.3 20 31 A K - 0 0 170 -2,-0.3 2,-1.3 12,-0.1 7,-0.1 -0.809 11.9-153.4 -95.0 122.3 -13.0 5.4 1.2 21 32 A G + 0 0 19 -2,-0.6 2,-0.4 5,-0.2 4,-0.1 -0.669 18.5 173.8 -94.9 84.2 -9.6 7.0 0.5 22 33 A T + 0 0 111 -2,-1.3 6,-0.1 4,-0.2 -1,-0.1 0.036 31.5 143.5 -78.4 32.4 -9.2 9.4 3.4 23 34 A G S > S- 0 0 11 4,-2.3 2,-2.6 -2,-0.4 3,-2.3 -0.012 74.2 -66.4 -62.9 176.8 -5.7 10.1 2.2 24 35 A V T 3 S+ 0 0 146 1,-0.3 -1,-0.2 2,-0.2 -2,-0.1 -0.395 134.0 7.0 -68.0 78.2 -4.2 13.6 2.5 25 36 A G T 3 S- 0 0 78 -2,-2.6 -1,-0.3 2,-0.1 -2,-0.1 0.489 136.2 -59.9 123.6 13.9 -6.7 15.2 0.0 26 37 A G S < S+ 0 0 61 -3,-2.3 -5,-0.2 1,-0.2 2,-0.2 0.799 92.0 150.1 86.2 30.3 -9.1 12.3 -0.6 27 38 A R - 0 0 167 -7,-0.1 -4,-2.3 1,-0.0 2,-0.7 -0.549 51.2-111.2 -93.6 162.0 -6.4 9.9 -1.9 28 39 A L + 0 0 59 -2,-0.2 -7,-0.1 -6,-0.1 2,-0.1 -0.820 41.1 178.0 -96.5 112.6 -6.4 6.1 -1.6 29 40 A T > - 0 0 42 -2,-0.7 4,-0.8 1,-0.1 3,-0.1 -0.164 41.5-104.3 -96.8-165.2 -3.6 4.9 0.7 30 41 A R H > S+ 0 0 143 2,-0.2 4,-1.9 1,-0.2 5,-0.2 0.736 113.4 65.8 -94.6 -26.1 -2.7 1.4 1.8 31 42 A E H 4 S+ 0 0 154 1,-0.2 4,-0.4 2,-0.2 -1,-0.2 0.519 102.9 52.8 -73.4 -1.1 -4.2 1.7 5.3 32 43 A D H > S+ 0 0 29 -3,-0.1 4,-0.7 2,-0.1 -1,-0.2 0.868 111.9 37.1 -98.4 -52.7 -7.6 2.0 3.6 33 44 A V H X S+ 0 0 10 -4,-0.8 4,-1.9 1,-0.2 3,-0.5 0.853 110.8 64.3 -69.3 -32.8 -7.7 -1.1 1.3 34 45 A E H >< S+ 0 0 110 -4,-1.9 3,-0.7 1,-0.3 -1,-0.2 0.967 96.0 55.1 -55.0 -56.0 -5.9 -3.2 3.9 35 46 A K H 34 S+ 0 0 190 -4,-0.4 -1,-0.3 1,-0.3 -2,-0.2 0.834 108.3 52.2 -47.7 -32.2 -8.7 -2.9 6.5 36 47 A H H 3< 0 0 109 -4,-0.7 -1,-0.3 -3,-0.5 -2,-0.2 0.894 360.0 360.0 -73.3 -38.7 -11.0 -4.3 3.7 37 48 A L << 0 0 109 -4,-1.9 -1,-0.2 -3,-0.7 -2,-0.2 0.446 360.0 360.0 -66.9 360.0 -8.7 -7.2 3.0