==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNOGLOBULIN-BINDING PROTEIN 28-JUN-96 1BDC . COMPND 2 MOLECULE: STAPHYLOCOCCUS AUREUS PROTEIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: STAPHYLOCOCCUS AUREUS; . AUTHOR H.GOUDA,H.TORIGOE,A.SAITO,M.SATO,Y.ARATA,I.SHIMADA . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4577.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 43 71.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 48.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 141 0, 0.0 4,-0.0 0, 0.0 6,-0.0 0.000 360.0 360.0 360.0-175.0 18.8 2.9 5.1 2 2 A A + 0 0 107 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.374 360.0 36.9-161.2 -18.2 21.8 2.6 2.8 3 3 A D S S+ 0 0 158 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.788 112.4 32.1-108.1 -70.9 21.0 0.1 0.1 4 4 A N S S- 0 0 71 2,-0.0 0, 0.0 1,-0.0 0, 0.0 0.167 78.3-120.5 -72.8-161.2 17.4 0.3 -1.1 5 5 A K + 0 0 129 -4,-0.0 2,-1.1 -3,-0.0 3,-0.5 -0.414 42.7 155.6-145.4 65.1 15.3 3.4 -1.2 6 6 A F + 0 0 43 1,-0.2 3,-0.1 4,-0.1 -2,-0.0 -0.736 45.2 85.8 -97.5 92.0 12.2 3.0 0.9 7 7 A N + 0 0 69 -2,-1.1 2,-2.4 4,-0.1 5,-0.2 0.440 40.3 110.9-152.8 -36.4 11.2 6.5 1.9 8 8 A K S S- 0 0 114 -3,-0.5 -1,-0.0 1,-0.3 -3,-0.0 -0.216 116.3 -64.1 -53.1 80.0 9.0 8.1 -0.8 9 9 A E S S+ 0 0 158 -2,-2.4 -1,-0.3 1,-0.1 4,-0.3 0.767 117.3 112.0 43.0 29.0 5.9 8.0 1.5 10 10 A Q > + 0 0 12 3,-0.1 4,-3.3 2,-0.1 5,-0.2 0.913 69.2 38.8 -91.9 -73.2 6.2 4.2 1.4 11 11 A Q H > S+ 0 0 55 1,-0.2 4,-1.7 2,-0.2 -4,-0.1 0.919 120.7 47.2 -42.6 -57.2 7.2 2.8 4.7 12 12 A N H > S+ 0 0 74 1,-0.2 4,-0.9 -5,-0.2 -1,-0.2 0.946 114.8 44.7 -53.5 -54.4 5.0 5.3 6.6 13 13 A A H >> S+ 0 0 13 -4,-0.3 4,-3.0 1,-0.2 3,-1.9 0.942 103.2 65.4 -58.7 -48.9 2.0 4.7 4.4 14 14 A F H 3X S+ 0 0 40 -4,-3.3 4,-1.6 1,-0.3 -1,-0.2 0.915 98.8 52.2 -39.4 -59.6 2.3 0.9 4.4 15 15 A Y H 3< S+ 0 0 153 -4,-1.7 -1,-0.3 1,-0.2 -2,-0.2 0.847 116.8 42.4 -49.3 -31.3 1.6 0.8 8.1 16 16 A E H XX S+ 0 0 129 -3,-1.9 3,-1.1 -4,-0.9 4,-0.5 0.929 99.4 67.6 -81.5 -47.6 -1.5 2.9 7.3 17 17 A I H >< S+ 0 0 0 -4,-3.0 3,-0.7 1,-0.3 2,-0.5 0.819 91.8 68.7 -41.8 -30.8 -2.6 1.0 4.1 18 18 A L T 3< S+ 0 0 42 -4,-1.6 -1,-0.3 -5,-0.3 -2,-0.1 -0.011 95.8 53.7 -82.9 35.6 -3.3 -1.8 6.5 19 19 A H T <4 + 0 0 139 -3,-1.1 -1,-0.2 -2,-0.5 -2,-0.2 0.498 62.9 129.4-137.2 -22.5 -6.2 0.1 8.1 20 20 A L X< - 0 0 20 -3,-0.7 3,-1.4 -4,-0.5 -3,-0.0 -0.142 40.1-164.6 -42.9 101.7 -8.5 1.1 5.2 21 21 A P T 3 S+ 0 0 124 0, 0.0 -1,-0.2 0, 0.0 -3,-0.0 0.572 79.0 66.6 -71.8 -7.6 -11.9 -0.1 6.5 22 22 A N T 3 S+ 0 0 39 2,-0.1 2,-0.3 36,-0.0 -2,-0.1 0.369 94.4 63.9 -96.6 7.4 -13.5 0.1 3.1 23 23 A L S < S- 0 0 19 -3,-1.4 2,-0.2 4,-0.0 30,-0.1 -0.917 71.1-125.9-132.7 159.8 -11.5 -2.7 1.4 24 24 A N > - 0 0 89 -2,-0.3 4,-1.6 1,-0.1 3,-0.1 -0.544 26.1-123.3 -91.2 164.8 -10.9 -6.4 1.5 25 25 A E H >>S+ 0 0 98 2,-0.2 4,-1.9 3,-0.2 5,-0.7 0.707 97.5 80.0 -86.2 -16.6 -7.5 -7.8 1.8 26 26 A E H >5S+ 0 0 160 1,-0.2 4,-0.8 2,-0.2 -1,-0.2 0.977 110.9 28.2 -50.5 -51.6 -7.5 -10.0 -1.2 27 27 A Q H >5S+ 0 0 96 2,-0.2 4,-1.6 3,-0.1 -1,-0.2 0.950 127.3 46.1 -73.2 -49.2 -6.9 -6.9 -3.2 28 28 A R H X>S+ 0 0 25 -4,-1.6 4,-1.4 1,-0.2 5,-0.5 0.990 110.2 50.4 -57.7 -65.6 -5.0 -5.1 -0.5 29 29 A N H X5S+ 0 0 55 -4,-1.9 4,-2.9 1,-0.2 5,-0.2 0.836 105.2 67.5 -41.9 -30.4 -2.8 -8.0 0.6 30 30 A G H XX5S+ 0 0 26 -4,-1.6 4,-1.2 1,-0.2 3,-1.2 0.966 128.9 38.9 -53.5 -58.8 -0.3 -4.8 -3.5 32 32 A I H 3X5S+ 0 0 1 -4,-1.4 4,-2.1 1,-0.3 5,-0.3 0.880 100.2 72.3 -63.4 -36.3 1.3 -4.8 -0.2 33 33 A Q H 3X S+ 0 0 75 -2,-1.8 3,-0.7 -6,-0.4 4,-0.2 0.908 95.3 14.4 -90.4 -80.2 10.6 -3.8 -5.4 41 41 A Q T 3> S+ 0 0 111 -3,-0.3 4,-2.8 1,-0.2 5,-0.2 0.349 93.1 116.8 -79.6 10.3 7.4 -2.3 -6.8 42 42 A S H 3> S+ 0 0 0 -4,-0.4 4,-1.7 1,-0.2 -1,-0.2 0.809 72.3 52.4 -47.0 -35.6 6.3 -1.5 -3.3 43 43 A A H <> S+ 0 0 26 -3,-0.7 4,-1.5 2,-0.2 3,-0.3 0.978 109.6 44.3 -69.3 -55.4 6.5 2.2 -4.0 44 44 A N H > S+ 0 0 81 1,-0.2 4,-2.1 -4,-0.2 5,-0.2 0.883 109.5 60.6 -56.9 -34.2 4.3 2.1 -7.1 45 45 A L H X S+ 0 0 21 -4,-2.8 4,-2.9 1,-0.2 -1,-0.2 0.937 96.4 60.2 -57.8 -46.2 2.0 -0.2 -5.1 46 46 A L H X S+ 0 0 12 -4,-1.7 4,-2.0 -3,-0.3 5,-0.2 0.944 106.1 46.7 -46.6 -54.7 1.6 2.6 -2.6 47 47 A A H X S+ 0 0 63 -4,-1.5 4,-1.5 1,-0.2 -2,-0.2 0.973 112.0 48.1 -53.2 -62.3 0.1 4.8 -5.3 48 48 A E H X S+ 0 0 116 -4,-2.1 4,-2.3 1,-0.2 -1,-0.2 0.852 110.1 55.2 -48.8 -39.2 -2.3 2.2 -6.7 49 49 A A H X S+ 0 0 0 -4,-2.9 4,-1.3 1,-0.2 -1,-0.2 0.987 101.6 52.9 -61.3 -60.3 -3.5 1.3 -3.2 50 50 A K H X S+ 0 0 81 -4,-2.0 4,-1.0 1,-0.3 3,-0.2 0.838 111.7 51.1 -44.6 -33.6 -4.5 4.8 -2.1 51 51 A K H X S+ 0 0 165 -4,-1.5 4,-1.8 -5,-0.2 -1,-0.3 0.960 102.9 54.8 -70.0 -50.4 -6.5 4.8 -5.4 52 52 A L H < S+ 0 0 49 -4,-2.3 -1,-0.2 1,-0.2 -2,-0.2 0.679 100.5 69.4 -57.4 -12.9 -8.2 1.5 -4.7 53 53 A N H >X S+ 0 0 37 -4,-1.3 3,-1.9 -3,-0.2 4,-0.6 0.995 102.3 36.1 -69.9 -63.8 -9.3 3.2 -1.4 54 54 A D H >< S+ 0 0 116 -4,-1.0 3,-1.0 1,-0.3 -2,-0.2 0.876 102.2 75.8 -58.1 -36.8 -11.8 5.7 -2.7 55 55 A A T 3< S+ 0 0 81 -4,-1.8 -1,-0.3 1,-0.3 -2,-0.2 0.613 118.7 16.2 -52.8 -6.4 -12.9 3.2 -5.4 56 56 A Q T <4 S+ 0 0 126 -3,-1.9 -1,-0.3 2,-0.1 -2,-0.2 0.295 100.2 110.8-148.2 6.6 -14.7 1.6 -2.4 57 57 A A S << S- 0 0 22 -3,-1.0 -37,-0.0 -4,-0.6 -4,-0.0 -0.706 71.3-109.1 -90.2 139.7 -14.8 4.3 0.3 58 58 A P + 0 0 119 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.137 44.7 171.7 -59.9 160.8 -18.2 5.9 1.3 59 59 A K 0 0 177 0, 0.0 -5,-0.0 0, 0.0 0, 0.0 -0.945 360.0 360.0-159.1 177.7 -18.8 9.5 0.3 60 60 A A 0 0 154 -2,-0.3 0, 0.0 0, 0.0 0, 0.0 0.180 360.0 360.0 -72.7 360.0 -21.3 12.3 0.2