==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 11-MAY-98 1BDW . COMPND 2 MOLECULE: GRAMICIDIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR B.M.BURKHART,W.A.PANGBORN,W.L.DUAX . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2581.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 22 73.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 165 0, 0.0 2,-0.3 0, 0.0 30,-0.2 0.000 360.0 360.0 360.0 130.5 7.3 4.0 16.1 2 2 A G E -A 30 0A 38 28,-2.8 28,-2.8 26,-0.0 2,-0.4 -0.902 360.0 -21.6 157.3-125.5 9.4 1.0 15.0 3 3 A A E S+A 29 0A 62 -2,-0.3 2,-0.4 26,-0.2 26,-0.2 -0.940 86.4 59.9-126.4 147.0 8.7 -2.1 12.9 4 4 A X E S-A 28 0A 120 24,-2.4 24,-2.8 -2,-0.4 2,-0.3 -0.963 90.7 -14.1 146.1-124.9 5.5 -3.9 12.2 5 5 A A E S+A 27 0A 58 -2,-0.4 2,-0.3 22,-0.2 22,-0.2 -0.850 90.0 65.5-116.6 145.9 2.3 -2.7 10.4 6 6 A X E S-A 26 0A 76 20,-2.3 20,-2.5 -2,-0.3 2,-0.4 -0.984 87.6 -31.1 150.0-128.2 1.3 0.9 9.6 7 7 A V E S+A 25 0A 52 24,-2.6 24,-2.5 -2,-0.3 2,-0.3 -0.951 85.0 67.2-129.2 150.5 3.0 3.4 7.3 8 8 A X E S-AB 24 30A 42 16,-2.2 16,-2.8 -2,-0.4 2,-0.4 -0.942 86.2 -21.9 150.3-124.5 6.6 4.0 6.2 9 9 A W E S+AB 23 29A 116 20,-2.3 20,-2.7 -2,-0.3 2,-0.3 -0.949 87.9 58.1-129.6 147.7 8.8 1.7 4.1 10 10 A X E S-AB 22 28A 71 12,-2.8 12,-2.4 -2,-0.4 2,-0.4 -0.926 88.8 -5.6 150.0-122.0 8.8 -1.9 3.3 11 11 A W E S+AB 21 27A 123 16,-2.7 16,-2.5 -2,-0.3 2,-0.3 -0.935 90.6 52.3-121.0 125.0 6.1 -4.1 1.7 12 12 A X E S-AB 20 26A 42 8,-2.7 8,-2.8 -2,-0.4 2,-0.4 -0.960 85.4 -17.8 158.1-139.8 2.5 -3.1 0.7 13 13 A W E S+AB 19 25A 138 12,-2.1 12,-2.9 -2,-0.3 2,-0.3 -0.879 87.0 48.6-112.1 133.7 0.8 -0.4 -1.3 14 14 A X E AB 18 24A 65 4,-2.7 4,-2.3 -2,-0.4 10,-0.2 -0.984 360.0 360.0 149.2-127.8 2.0 3.0 -2.4 15 15 A W 0 0 161 8,-2.7 8,-2.2 -2,-0.3 5,-0.0 -0.713 360.0 360.0 -98.2 360.0 5.1 4.2 -4.2 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 177 0, 0.0 2,-0.3 0, 0.0 -2,-0.2 0.000 360.0 360.0 360.0 133.5 2.3 3.4 -8.0 18 2 B G E -A 14 0A 30 -4,-2.3 -4,-2.7 2,-0.0 2,-0.3 -0.925 360.0 -29.2 155.4-130.3 0.7 0.1 -7.0 19 3 B A E S+A 13 0A 49 -2,-0.3 2,-0.4 -6,-0.2 -6,-0.2 -0.876 83.0 66.3-125.0 152.6 1.9 -2.8 -4.8 20 4 B X E S-A 12 0A 96 -8,-2.8 -8,-2.7 -2,-0.3 2,-0.3 -0.991 88.8 -19.8 144.0-134.6 5.3 -4.3 -4.0 21 5 B A E S+A 11 0A 66 -2,-0.4 2,-0.3 -10,-0.2 -10,-0.2 -0.845 91.0 65.9-111.3 144.8 8.2 -2.8 -2.1 22 6 B X E S-A 10 0A 75 -12,-2.4 -12,-2.8 -2,-0.3 2,-0.4 -0.987 87.8 -21.1 150.4-136.1 8.8 0.9 -1.5 23 7 B V E S+A 9 0A 51 -8,-2.2 -8,-2.7 -2,-0.3 2,-0.3 -0.895 87.8 56.7-117.0 138.1 7.0 3.5 0.6 24 8 B X E S-AB 8 14A 44 -16,-2.8 -16,-2.2 -2,-0.4 2,-0.4 -0.959 83.6 -11.0 153.9-138.2 3.4 3.4 1.7 25 9 B W E S+AB 7 13A 127 -12,-2.9 -12,-2.1 -2,-0.3 2,-0.3 -0.881 89.5 50.1-114.4 128.6 1.0 1.3 3.7 26 10 B X E S-AB 6 12A 37 -20,-2.5 -20,-2.3 -2,-0.4 2,-0.4 -0.950 92.0 -12.3 153.2-136.4 1.7 -2.3 4.9 27 11 B W E S+AB 5 11A 123 -16,-2.5 -16,-2.7 -2,-0.3 2,-0.3 -0.853 87.3 65.0-109.5 137.6 4.5 -4.0 6.7 28 12 B X E S-AB 4 10A 50 -24,-2.8 -24,-2.4 -2,-0.4 2,-0.4 -0.983 82.8 -24.1 157.3-144.3 7.9 -2.5 7.4 29 13 B W E S+AB 3 9A 113 -20,-2.7 -20,-2.3 -2,-0.3 2,-0.3 -0.860 87.6 48.7-110.7 141.3 9.5 0.4 9.3 30 14 B X E AB 2 8A 56 -28,-2.8 -28,-2.8 -2,-0.4 -22,-0.2 -0.969 360.0 360.0 144.8-128.6 7.9 3.6 10.4 31 15 B W 0 0 158 -24,-2.5 -24,-2.6 -2,-0.3 -27,-0.0 -0.811 360.0 360.0-108.4 360.0 4.7 4.6 12.2