==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIPID TRANSPORT 19-MAY-98 1BE2 . COMPND 2 MOLECULE: LIPID TRANSFER PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HORDEUM VULGARE; . AUTHOR M.H.LERCHE,F.M.POULSEN . 91 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5174.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 63 69.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 4.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 11.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 46 50.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 50 0, 0.0 5,-0.4 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0 92.9 -8.7 -1.1 9.4 2 2 A N > - 0 0 151 1,-0.1 3,-3.2 3,-0.1 4,-0.1 0.152 360.0-131.0 -21.0 75.1 -8.2 2.0 11.6 3 3 A a T 3> S+ 0 0 51 1,-0.3 4,-2.2 2,-0.2 5,-0.2 0.466 101.2 65.9 1.9 -58.4 -6.2 4.2 9.0 4 4 A G H 3> S+ 0 0 42 1,-0.2 4,-3.1 2,-0.2 -1,-0.3 0.822 98.3 56.8 -49.4 -33.2 -3.4 5.2 11.5 5 5 A Q H <> S+ 0 0 109 -3,-3.2 4,-2.1 2,-0.2 5,-0.3 0.997 104.4 51.2 -60.3 -63.5 -2.4 1.5 11.4 6 6 A V H >> S+ 0 0 0 -5,-0.4 4,-3.4 1,-0.2 3,-0.6 0.873 115.8 41.5 -35.6 -59.9 -2.0 1.6 7.6 7 7 A D H 3X S+ 0 0 49 -4,-2.2 4,-3.2 1,-0.2 -1,-0.2 0.962 113.1 51.5 -58.6 -57.6 0.2 4.6 7.9 8 8 A S H 3< S+ 0 0 63 -4,-3.1 -1,-0.2 -5,-0.2 -2,-0.2 0.671 118.6 41.1 -54.6 -18.5 2.2 3.2 11.0 9 9 A K H X S+ 0 0 12 -4,-3.4 4,-2.6 -5,-0.3 3,-1.0 0.908 93.2 88.7 -49.4 -51.7 3.4 1.6 5.5 11 11 A K H 3X S+ 0 0 89 -4,-3.2 4,-2.1 1,-0.2 -1,-0.2 0.657 88.0 43.9 -20.9 -61.7 5.7 4.4 6.9 12 12 A P H 3> S+ 0 0 67 0, 0.0 4,-1.9 0, 0.0 -1,-0.2 0.963 118.4 45.5 -58.8 -46.4 9.1 2.5 6.9 13 13 A b H X S+ 0 0 63 -4,-2.1 4,-3.0 -5,-0.2 3,-0.7 0.968 107.4 51.7 -48.6 -51.2 10.8 5.6 3.3 16 16 A Y H 3X S+ 0 0 13 -4,-1.9 4,-1.6 3,-0.3 3,-0.4 0.957 107.4 49.2 -50.8 -65.4 11.6 2.9 0.7 17 17 A V H 3< S+ 0 0 0 -4,-2.5 45,-2.6 1,-0.2 -1,-0.2 0.720 118.4 41.5 -49.5 -26.1 9.3 4.4 -2.1 18 18 A Q H << S- 0 0 87 -4,-2.1 -1,-0.2 -3,-0.7 -2,-0.2 0.794 146.8 -57.4 -91.2 -32.4 10.9 7.9 -1.5 19 19 A G H < S+ 0 0 68 -4,-3.0 -3,-0.3 -3,-0.4 -2,-0.2 0.299 82.7 150.5 153.0 55.5 14.5 6.6 -1.2 20 20 A G < - 0 0 19 -4,-1.6 2,-1.1 -5,-0.4 -7,-0.0 -0.694 55.8-119.0-105.1 159.2 14.8 4.0 1.5 21 21 A P S S+ 0 0 143 0, 0.0 -5,-0.1 0, 0.0 -6,-0.0 -0.305 78.7 166.1 -94.6 49.4 17.3 1.0 1.8 22 22 A G + 0 0 28 -2,-1.1 2,-0.1 -9,-0.1 -2,-0.0 -0.572 28.2 58.8-120.8-179.0 14.2 -1.2 1.8 23 23 A P - 0 0 54 0, 0.0 -10,-0.0 0, 0.0 42,-0.0 0.550 36.8-171.0 -89.1 164.2 12.0 -3.2 1.8 24 24 A S - 0 0 92 -2,-0.1 2,-0.1 1,-0.0 -2,-0.0 0.196 56.5 -97.1 -97.9 12.9 13.0 -5.7 4.6 25 25 A G S > S+ 0 0 39 4,-0.0 4,-2.3 1,-0.0 5,-0.2 -0.181 111.0 98.3 98.6 -43.2 10.3 -8.4 3.8 26 26 A E H > S+ 0 0 88 2,-0.2 4,-3.4 1,-0.2 5,-0.4 0.878 79.4 51.5 -39.9 -55.7 8.2 -6.8 6.5 27 27 A b H > S+ 0 0 0 2,-0.2 4,-3.5 1,-0.2 5,-0.4 0.966 106.8 49.6 -50.3 -78.1 6.2 -4.8 4.0 28 28 A c H > S+ 0 0 29 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.780 120.1 40.8 -27.7 -47.5 5.3 -7.7 1.7 29 29 A N H X S+ 0 0 112 -4,-2.3 4,-2.7 2,-0.2 -2,-0.2 0.988 116.9 42.4 -70.8 -64.2 4.1 -9.5 4.8 30 30 A G H X S+ 0 0 21 -4,-3.4 4,-2.4 1,-0.2 -2,-0.2 0.882 116.0 55.5 -51.1 -38.9 2.3 -6.7 6.8 31 31 A V H X S+ 0 0 19 -4,-3.5 4,-2.8 -5,-0.4 5,-0.3 0.978 104.3 48.8 -58.5 -61.9 0.9 -5.6 3.5 32 32 A R H X S+ 0 0 73 -4,-2.2 4,-1.8 -5,-0.4 5,-0.4 0.931 107.1 59.1 -46.7 -50.8 -0.6 -9.0 2.8 33 33 A D H >X S+ 0 0 84 -4,-2.7 4,-3.2 1,-0.3 3,-1.5 0.948 109.3 41.8 -44.6 -60.2 -2.1 -8.8 6.3 34 34 A L H 3X S+ 0 0 15 -4,-2.4 4,-2.7 1,-0.3 -1,-0.3 0.905 116.8 49.9 -56.3 -35.9 -4.0 -5.6 5.4 35 35 A H H 3< S+ 0 0 31 -4,-2.8 -1,-0.3 1,-0.2 -2,-0.2 0.608 117.3 40.4 -75.0 -14.3 -4.8 -7.3 2.0 36 36 A N H << S+ 0 0 101 -4,-1.8 -2,-0.2 -3,-1.5 -1,-0.2 0.687 118.9 44.8 -99.0 -33.9 -6.0 -10.5 4.0 37 37 A Q H < S+ 0 0 98 -4,-3.2 2,-0.5 -5,-0.4 -2,-0.2 0.909 110.1 60.3 -78.5 -49.7 -7.8 -8.5 6.7 38 38 A A < + 0 0 0 -4,-2.7 3,-0.1 -5,-0.4 -1,-0.1 -0.706 65.8 164.3 -81.2 128.7 -9.4 -6.1 4.2 39 39 A Q + 0 0 139 -2,-0.5 2,-0.3 1,-0.3 -1,-0.2 0.817 51.4 32.7-112.0 -54.4 -11.6 -8.3 1.8 40 40 A S S >> S- 0 0 83 1,-0.0 3,-2.4 4,-0.0 4,-1.3 -0.794 92.2 -91.4-113.3 153.5 -14.0 -6.2 -0.3 41 41 A S H 3> S+ 0 0 44 -2,-0.3 4,-3.5 1,-0.3 49,-0.1 0.685 118.8 62.4 -22.2 -49.6 -13.8 -2.6 -1.7 42 42 A G H 3> S+ 0 0 60 2,-0.2 4,-0.8 1,-0.2 -1,-0.3 0.801 108.4 36.8 -56.8 -38.7 -15.4 -1.1 1.5 43 43 A D H <> S+ 0 0 44 -3,-2.4 4,-1.4 2,-0.2 -1,-0.2 0.922 119.4 51.0 -79.8 -46.0 -12.7 -2.1 4.0 44 44 A R H X S+ 0 0 30 -4,-1.3 4,-3.4 1,-0.2 5,-0.3 0.942 99.9 65.7 -52.9 -59.1 -10.0 -1.5 1.5 45 45 A Q H X S+ 0 0 57 -4,-3.5 4,-3.3 2,-0.2 5,-0.3 0.847 102.5 44.3 -30.5 -71.1 -11.3 2.0 0.6 46 46 A T H X S+ 0 0 76 -4,-0.8 4,-1.9 1,-0.2 -1,-0.2 0.938 120.6 42.5 -43.2 -57.5 -10.6 3.6 4.1 47 47 A V H X S+ 0 0 11 -4,-1.4 4,-3.3 2,-0.2 5,-0.4 0.952 114.4 49.0 -57.2 -54.0 -7.2 2.0 4.1 48 48 A d H X S+ 0 0 3 -4,-3.4 4,-3.3 1,-0.3 5,-0.3 0.964 110.1 52.5 -52.2 -55.4 -6.3 2.7 0.4 49 49 A N H X S+ 0 0 60 -4,-3.3 4,-2.9 -5,-0.3 -1,-0.3 0.870 114.5 43.2 -50.5 -40.0 -7.3 6.4 1.0 50 50 A a H X S+ 0 0 21 -4,-1.9 4,-2.8 -5,-0.3 -2,-0.2 0.958 115.3 45.1 -73.4 -51.5 -4.9 6.4 4.0 51 51 A L H X S+ 0 0 17 -4,-3.3 4,-2.8 2,-0.2 -2,-0.2 0.905 118.5 46.5 -56.3 -39.1 -2.0 4.6 2.3 52 52 A K H X S+ 0 0 40 -4,-3.3 4,-2.8 -5,-0.4 5,-0.3 0.985 106.7 59.4 -64.5 -56.8 -2.7 6.9 -0.7 53 53 A G H X S+ 0 0 26 -4,-2.9 4,-2.8 -5,-0.3 -2,-0.2 0.877 110.3 41.1 -36.8 -57.3 -2.9 9.8 1.8 54 54 A I H < S+ 0 0 25 -4,-2.8 -1,-0.2 2,-0.2 -2,-0.2 0.965 109.9 57.5 -62.1 -53.1 0.7 9.1 2.9 55 55 A A H >< S+ 0 0 5 -4,-2.8 3,-0.6 1,-0.3 6,-0.4 0.850 114.0 42.1 -42.5 -39.7 1.9 8.4 -0.8 56 56 A R H 3< S+ 0 0 172 -4,-2.8 2,-0.9 1,-0.2 -1,-0.3 0.918 111.4 55.4 -73.7 -46.6 0.6 11.9 -1.4 57 57 A G T 3< S+ 0 0 64 -4,-2.8 -1,-0.2 -5,-0.3 -2,-0.2 -0.131 96.8 83.9 -82.5 41.0 2.1 13.2 1.9 58 58 A I S < S- 0 0 32 -2,-0.9 -3,-0.1 -3,-0.6 -43,-0.0 -0.410 86.3-106.0-121.2-162.5 5.6 12.0 0.9 59 59 A H S S- 0 0 169 -2,-0.2 -1,-0.2 1,-0.0 2,-0.2 0.824 90.2 -19.5 -97.4 -83.3 8.3 13.6 -1.2 60 60 A N - 0 0 123 -42,-0.1 -4,-0.1 2,-0.0 -5,-0.0 -0.516 69.7-148.9-130.3 67.3 8.7 12.0 -4.6 61 61 A L - 0 0 26 -6,-0.4 2,-1.0 -2,-0.2 -43,-0.2 0.008 14.4-136.6 -33.7 126.9 7.1 8.5 -4.4 62 62 A N >> - 0 0 71 -45,-2.6 3,-1.0 1,-0.2 4,-0.9 -0.795 6.2-144.4-100.5 93.3 9.1 6.3 -6.8 63 63 A L H 3> S+ 0 0 128 -2,-1.0 4,-3.0 1,-0.2 5,-0.4 0.633 94.5 62.3 -18.5 -51.1 6.5 4.2 -8.7 64 64 A N H 3> S+ 0 0 94 2,-0.2 4,-3.5 1,-0.2 5,-0.3 0.955 100.7 49.9 -46.2 -69.5 8.8 1.2 -8.9 65 65 A N H <> S+ 0 0 19 -3,-1.0 4,-2.0 1,-0.2 -1,-0.2 0.874 116.9 44.1 -36.6 -53.8 9.0 0.8 -5.1 66 66 A A H < S+ 0 0 0 -4,-0.9 3,-0.4 2,-0.2 15,-0.3 0.977 117.5 39.0 -61.9 -61.3 5.3 0.9 -4.9 67 67 A A H X S+ 0 0 48 -4,-3.0 4,-2.3 1,-0.2 -2,-0.2 0.895 112.5 63.5 -53.9 -39.6 4.3 -1.4 -7.9 68 68 A S H X>S+ 0 0 24 -4,-3.5 4,-3.0 -5,-0.4 5,-0.7 0.897 88.3 68.3 -52.0 -52.1 7.2 -3.6 -6.8 69 69 A I H >X5S+ 0 0 7 -4,-2.0 4,-3.3 -3,-0.4 3,-0.6 0.905 110.4 30.0 -45.0 -72.7 5.6 -4.3 -3.5 70 70 A P H 3>>S+ 0 0 14 0, 0.0 4,-2.5 0, 0.0 5,-1.1 0.939 118.9 60.1 -48.1 -49.8 2.6 -6.5 -4.9 71 71 A S H 3<5S+ 0 0 60 -4,-2.3 -2,-0.2 1,-0.2 -3,-0.2 0.809 124.3 17.2 -41.6 -49.2 4.9 -7.6 -7.8 72 72 A K H <<5S+ 0 0 137 -4,-3.0 -1,-0.2 -3,-0.6 -3,-0.2 0.686 122.0 59.4 -98.5 -32.0 7.6 -9.2 -5.5 73 73 A c H <> + 0 0 48 1,-0.2 4,-1.5 -2,-0.1 3,-1.4 0.109 65.9 139.2 -92.1 26.1 -8.1 2.6 -8.1 87 87 A d T 34 + 0 0 0 1,-0.3 -1,-0.2 2,-0.2 -38,-0.1 0.730 55.1 81.9 -37.6 -28.9 -9.2 2.9 -4.5 88 88 A S T 34 S- 0 0 100 -3,-0.4 -1,-0.3 1,-0.1 -2,-0.1 0.893 119.7 -15.9 -41.9 -64.9 -12.4 4.0 -6.1 89 89 A R T <4 - 0 0 132 -3,-1.4 -48,-0.2 -44,-0.0 -2,-0.2 0.670 68.9-154.8-119.0 -38.2 -13.9 0.6 -6.9 90 90 A I < 0 0 15 -4,-1.5 -49,-0.2 1,-0.1 -3,-0.1 0.916 360.0 360.0 53.8 47.4 -11.1 -1.9 -6.7 91 91 A Y 0 0 237 -5,-0.2 -1,-0.1 -13,-0.0 -3,-0.0 -0.070 360.0 360.0-160.5 360.0 -12.8 -4.3 -9.1