==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 23-MAY-98 1BFY . COMPND 2 MOLECULE: RUBREDOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: CLOSTRIDIUM PASTEURIANUM; . AUTHOR I.BERTINI,D.M.KURTZ JUNIOR,M.K.EIDSNESS,G.LIU,C.LUCHINAT, . 54 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3836.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 44.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 13.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 14.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 3 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 79 0, 0.0 30,-0.0 0, 0.0 28,-0.0 0.000 360.0 360.0 360.0 169.5 -4.5 0.7 10.2 2 2 A K - 0 0 115 49,-0.1 28,-0.3 2,-0.0 51,-0.1 0.210 360.0 -62.6 58.7 167.4 -1.0 -0.6 10.9 3 3 A K E -A 52 0A 46 49,-0.9 49,-2.8 11,-0.1 2,-0.3 -0.200 51.8-154.6 -74.0 170.4 1.5 -1.4 8.2 4 4 A Y E -AB 51 13A 31 9,-2.3 9,-2.4 47,-0.3 47,-0.2 -0.996 14.0-116.1-146.9 147.2 1.0 -4.0 5.5 5 5 A T - 0 0 37 45,-2.9 7,-0.1 -2,-0.3 8,-0.1 -0.268 21.5-129.9 -64.9 165.6 3.1 -6.2 3.2 6 6 A C - 0 0 14 43,-0.1 41,-0.2 6,-0.1 -1,-0.1 0.819 41.4-110.1 -68.8 -97.6 3.0 -5.9 -0.6 7 7 A T S S- 0 0 62 42,-0.1 -2,-0.0 39,-0.1 41,-0.0 0.109 85.0 -19.7-172.9 -41.7 2.4 -9.6 -1.6 8 8 A V S S+ 0 0 127 3,-0.0 -3,-0.0 -3,-0.0 -2,-0.0 0.508 120.6 68.1-147.8 -38.6 5.7 -10.6 -3.2 9 9 A C S S- 0 0 66 2,-0.1 33,-0.0 1,-0.1 0, 0.0 0.917 99.0-116.3 -65.0 -41.5 8.0 -7.8 -4.3 10 10 A G + 0 0 65 1,-0.1 2,-0.6 0, 0.0 -1,-0.1 0.761 62.4 142.1 109.4 47.7 8.7 -6.6 -0.8 11 11 A Y - 0 0 101 2,-0.0 2,-0.3 0, 0.0 -1,-0.1 -0.845 37.2-154.0-114.9 89.4 7.3 -3.0 -0.5 12 12 A I - 0 0 85 -2,-0.6 2,-0.3 -7,-0.1 -7,-0.2 -0.513 12.3-138.5 -63.8 125.5 5.7 -2.7 3.0 13 13 A Y B -B 4 0A 4 -9,-2.4 -9,-2.3 -2,-0.3 39,-0.2 -0.681 13.3-160.7 -81.6 138.9 3.0 -0.0 2.9 14 14 A N > - 0 0 35 4,-0.4 4,-2.3 -2,-0.3 3,-0.4 -0.972 7.1-163.7-122.9 114.3 2.8 2.4 5.9 15 15 A P T 4 S+ 0 0 1 0, 0.0 12,-2.8 0, 0.0 13,-0.9 0.890 90.0 58.1 -67.5 -38.9 -0.5 4.2 6.5 16 16 A E T 4 S+ 0 0 149 1,-0.2 13,-0.1 10,-0.2 -13,-0.0 0.837 119.4 32.6 -59.9 -30.9 1.0 6.8 8.8 17 17 A D T 4 S- 0 0 103 -3,-0.4 -1,-0.2 9,-0.2 2,-0.0 0.755 97.1-169.3 -87.4 -31.7 3.3 7.7 5.9 18 18 A G < - 0 0 7 -4,-2.3 -4,-0.4 1,-0.2 7,-0.2 -0.287 37.5 -92.3 63.2-159.4 0.8 6.9 3.2 19 19 A D B >>> +C 24 0B 25 5,-2.4 5,-2.5 6,-0.1 4,-2.0 -0.493 58.7 158.3-139.9 61.2 2.2 6.8 -0.4 20 20 A P T 345S+ 0 0 69 0, 0.0 5,-0.1 0, 0.0 -2,-0.1 0.840 70.6 63.3 -63.4 -30.6 1.5 10.4 -1.4 21 21 A D T 345S+ 0 0 156 1,-0.2 4,-0.1 3,-0.1 -3,-0.0 0.763 113.5 35.8 -59.9 -28.2 4.1 10.3 -4.2 22 22 A N T <45S- 0 0 72 -3,-1.7 -1,-0.2 2,-0.2 16,-0.1 0.654 134.5 -86.3-102.4 -26.2 1.9 7.6 -5.8 23 23 A G T <5S+ 0 0 52 -4,-2.0 2,-0.6 1,-0.2 -2,-0.1 0.431 91.1 114.8 135.8 11.0 -1.4 9.1 -4.8 24 24 A V B < -C 19 0B 3 -5,-2.5 -5,-2.4 9,-0.1 -1,-0.2 -0.915 56.4-139.4-113.0 110.2 -2.2 7.9 -1.2 25 25 A N > - 0 0 113 -2,-0.6 3,-1.1 -7,-0.2 -7,-0.1 -0.229 33.1 -87.9 -63.6 155.1 -2.2 10.6 1.5 26 26 A P T 3 S+ 0 0 78 0, 0.0 -10,-0.2 0, 0.0 -9,-0.2 -0.311 115.0 34.6 -59.3 149.0 -0.7 9.9 4.9 27 27 A G T 3 S+ 0 0 44 -12,-2.8 2,-0.8 1,-0.3 -11,-0.2 0.576 81.9 142.6 75.3 15.8 -3.2 8.4 7.4 28 28 A T < - 0 0 32 -3,-1.1 -1,-0.3 -13,-0.9 -10,-0.1 -0.786 49.8-132.9 -89.1 116.2 -4.9 6.4 4.6 29 29 A D > - 0 0 26 -2,-0.8 4,-1.3 1,-0.1 3,-0.4 -0.429 18.8-119.6 -57.8 136.1 -5.9 3.0 5.9 30 30 A F T 4 S+ 0 0 6 -28,-0.3 3,-0.2 1,-0.2 -1,-0.1 0.814 116.7 54.7 -44.2 -37.7 -4.9 0.2 3.5 31 31 A K T 4 S+ 0 0 153 1,-0.2 -1,-0.2 -30,-0.0 -3,-0.0 0.958 106.5 49.6 -67.2 -42.4 -8.6 -0.6 3.3 32 32 A D T 4 S+ 0 0 109 -3,-0.4 -1,-0.2 2,-0.1 -2,-0.2 0.627 84.4 112.8 -71.4 -18.3 -9.5 3.0 2.3 33 33 A I S < S- 0 0 3 -4,-1.3 -9,-0.1 -3,-0.2 2,-0.1 -0.379 81.5-105.9 -53.4 133.4 -6.7 2.9 -0.4 34 34 A P > - 0 0 53 0, 0.0 3,-2.1 0, 0.0 12,-0.2 -0.349 16.7-128.3 -64.9 142.2 -8.5 3.1 -3.8 35 35 A D T 3 S+ 0 0 137 1,-0.3 11,-0.2 -3,-0.1 -2,-0.1 0.649 109.1 67.6 -68.5 -12.3 -8.4 -0.2 -5.7 36 36 A D T 3 S+ 0 0 136 9,-0.1 -1,-0.3 2,-0.0 2,-0.1 0.668 82.7 97.9 -74.8 -17.2 -7.0 1.8 -8.7 37 37 A W < - 0 0 20 -3,-2.1 9,-1.2 -14,-0.0 2,-0.3 -0.444 57.0-170.5 -75.3 147.6 -3.9 2.3 -6.6 38 38 A V - 0 0 62 7,-0.2 5,-0.1 -2,-0.1 -2,-0.0 -0.850 36.9 -69.1-131.5 161.2 -0.9 -0.1 -7.3 39 39 A C > - 0 0 17 -2,-0.3 3,-0.6 1,-0.1 -1,-0.1 -0.165 47.7-121.2 -43.8 144.5 2.5 -0.8 -5.7 40 40 A P T 3 S+ 0 0 25 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.893 105.0 8.9 -64.3 -42.4 4.9 2.1 -6.1 41 41 A L T 3 S+ 0 0 141 -30,-0.0 2,-0.3 0, 0.0 -2,-0.1 -0.265 120.7 73.0-135.4 44.9 7.6 0.1 -7.9 42 42 A C < - 0 0 32 -3,-0.6 2,-0.6 -31,-0.0 3,-0.1 -0.958 69.5-133.0-158.4 152.0 5.8 -3.2 -8.6 43 43 A G S S+ 0 0 79 -2,-0.3 -5,-0.0 1,-0.1 0, 0.0 -0.817 72.9 84.8-120.8 86.7 3.0 -4.2 -11.0 44 44 A V S S- 0 0 88 -2,-0.6 -1,-0.1 -5,-0.1 2,-0.1 0.421 77.6-121.6-145.5 -51.8 0.3 -6.3 -9.3 45 45 A G - 0 0 18 -3,-0.1 2,-0.8 2,-0.1 -7,-0.2 -0.222 47.4 -53.5 109.4 154.7 -2.3 -4.1 -7.6 46 46 A K S S+ 0 0 22 -9,-1.2 2,-0.3 -11,-0.2 -39,-0.1 -0.531 87.5 120.6 -64.5 107.8 -3.5 -3.9 -4.0 47 47 A D + 0 0 113 -2,-0.8 -2,-0.1 -41,-0.2 -3,-0.0 -0.949 59.3 18.7-160.5 157.9 -4.4 -7.6 -3.1 48 48 A Q S S+ 0 0 142 -2,-0.3 2,-0.5 1,-0.2 -1,-0.1 0.830 74.3 167.1 44.6 54.2 -3.4 -10.3 -0.7 49 49 A F - 0 0 70 -3,-0.0 2,-0.2 -45,-0.0 -1,-0.2 -0.876 24.2-149.3-100.3 117.9 -1.7 -7.8 1.7 50 50 A E - 0 0 138 -2,-0.5 -45,-2.9 -44,-0.1 2,-0.3 -0.623 24.0-108.8 -85.2 148.1 -0.8 -9.2 5.2 51 51 A E E -A 4 0A 90 -47,-0.2 2,-0.7 -2,-0.2 -47,-0.3 -0.587 23.6-137.0 -79.5 138.7 -0.9 -6.8 8.2 52 52 A V E -A 3 0A 28 -49,-2.8 2,-2.3 -2,-0.3 -49,-0.9 -0.880 13.7-141.4-102.5 105.0 2.5 -5.9 9.7 53 53 A E 0 0 177 -2,-0.7 -49,-0.0 -51,-0.1 -51,-0.0 -0.408 360.0 360.0 -72.9 68.6 2.3 -6.0 13.5 54 54 A E 0 0 180 -2,-2.3 -51,-0.0 -51,-0.1 -2,-0.0 -0.581 360.0 360.0 -56.2 360.0 4.4 -3.0 14.6