==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 16-JUN-98 1BH7 . COMPND 2 MOLECULE: BAND 3; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR D.ASKIN,G.B.BLOOMBERG,E.J.CHAMBERS,M.J.A.TANNER . 31 3 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4446.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 41.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 12.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 9 A I 0 0 181 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 60.6 30.8 5.3 -2.6 2 10 A Q + 0 0 135 17,-0.1 2,-0.5 1,-0.0 3,-0.3 -0.242 360.0 131.9-138.8 45.8 33.0 2.4 -1.4 3 11 A L > + 0 0 97 1,-0.2 5,-0.5 2,-0.1 -1,-0.0 -0.242 38.9 105.0 -94.2 47.2 30.6 -0.6 -1.7 4 12 A F T >>5S+ 0 0 133 -2,-0.5 3,-1.1 3,-0.2 4,-0.8 0.912 78.3 41.9 -91.3 -53.4 33.2 -2.8 -3.6 5 13 A D T 345S+ 0 0 149 -3,-0.3 -2,-0.1 1,-0.2 -1,-0.0 0.965 116.7 47.2 -57.3 -57.4 34.3 -5.3 -0.9 6 14 A R T 345S+ 0 0 174 -4,-0.3 -1,-0.2 2,-0.1 -2,-0.1 0.419 128.7 19.9 -69.8 3.3 30.8 -5.9 0.5 7 15 A I T <45 0 0 125 -3,-1.1 -3,-0.2 0, 0.0 -2,-0.2 0.553 360.0 360.0-135.0 -68.7 29.2 -6.4 -2.9 8 16 A L << 0 0 173 -4,-0.8 -3,-0.2 -5,-0.5 -4,-0.1 0.311 360.0 360.0-110.0 360.0 31.3 -7.3 -6.0 9 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 10 18 A L 0 0 221 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -88.7 41.1 12.7 -4.0 11 19 A F - 0 0 194 1,-0.0 0, 0.0 0, 0.0 0, 0.0 -0.401 360.0-105.9 -97.9 179.7 40.2 14.2 -7.4 12 20 A K - 0 0 189 -2,-0.1 5,-0.1 5,-0.0 -1,-0.0 -0.904 25.4-131.8-110.1 137.2 37.6 13.2 -10.1 13 21 A P - 0 0 67 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.783 16.7-173.3 -90.1 121.7 38.6 11.4 -13.4 14 22 A P S S+ 0 0 136 0, 0.0 3,-0.0 0, 0.0 -2,-0.0 0.634 82.9 57.6 -86.7 -20.8 37.1 12.9 -16.6 15 23 A K S S+ 0 0 179 1,-0.0 2,-0.2 0, 0.0 0, 0.0 0.937 116.2 22.3 -78.2 -48.2 38.4 10.1 -18.9 16 24 A Y - 0 0 160 2,-0.1 -1,-0.0 0, 0.0 0, 0.0 -0.678 63.4-141.3-113.0 172.5 36.8 7.2 -17.0 17 25 A H + 0 0 169 -2,-0.2 2,-0.9 -5,-0.1 -5,-0.0 -0.632 32.4 176.8-132.4 69.1 33.7 6.8 -14.7 18 26 A P 0 0 76 0, 0.0 4,-0.1 0, 0.0 -2,-0.1 -0.686 360.0 360.0 -84.5 101.0 35.1 4.2 -12.2 19 27 A D 0 0 158 -2,-0.9 -17,-0.1 2,-0.0 -2,-0.1 -0.672 360.0 360.0 -78.4 360.0 32.7 3.5 -9.3 20 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 21 29 A P 0 0 94 0, 0.0 3,-0.2 0, 0.0 -2,-0.0 0.000 360.0 360.0 360.0 118.6 40.2 4.7 -7.1 22 30 A Y + 0 0 221 1,-0.2 2,-0.8 2,-0.1 3,-0.2 0.790 360.0 48.6 -37.8 -46.7 43.4 4.6 -9.2 23 31 A V + 0 0 66 1,-0.2 -1,-0.2 2,-0.1 3,-0.1 -0.714 57.1 124.7-110.9 92.5 45.7 3.5 -6.3 24 32 A K >> + 0 0 88 -2,-0.8 4,-0.8 -3,-0.2 3,-0.7 0.359 43.8 103.8-117.2 -0.6 44.4 0.6 -4.2 25 33 A R T 34 S+ 0 0 195 1,-0.3 -1,-0.1 -3,-0.2 -2,-0.1 0.804 104.2 15.7 -52.7 -28.6 47.6 -1.6 -4.6 26 34 A V T 3> S+ 0 0 75 3,-0.1 4,-0.8 2,-0.1 -1,-0.3 0.246 111.7 79.4-130.8 12.6 48.5 -0.6 -1.1 27 35 A K H <> S+ 0 0 115 -3,-0.7 4,-1.1 2,-0.2 3,-0.2 0.945 96.8 40.8 -86.9 -55.0 45.3 0.9 0.4 28 36 A T H X S+ 0 0 59 -4,-0.8 4,-0.9 1,-0.2 3,-0.3 0.872 112.7 57.6 -59.4 -36.0 43.3 -2.3 1.3 29 37 A W H >4 S+ 0 0 186 -5,-0.4 3,-0.8 1,-0.2 -1,-0.2 0.935 107.6 45.9 -62.7 -43.1 46.5 -4.0 2.6 30 38 A R H >< S+ 0 0 157 -4,-0.8 3,-1.4 1,-0.2 -1,-0.2 0.689 99.1 72.5 -73.6 -15.1 47.1 -1.1 5.1 31 39 A M H 3< S+ 0 0 152 -4,-1.1 -1,-0.2 -3,-0.3 -2,-0.2 0.843 94.0 53.4 -68.9 -29.0 43.4 -1.3 6.1 32 40 A H T << 0 0 180 -4,-0.9 -1,-0.3 -3,-0.8 -2,-0.2 0.268 360.0 360.0 -89.1 16.9 44.2 -4.6 7.9 33 41 A L < 0 0 142 -3,-1.4 -1,-0.2 0, 0.0 -2,-0.1 0.035 360.0 360.0-124.9 360.0 47.0 -2.9 9.8