==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA-BINDING REGULATORY PROTEIN 09-JUN-98 1BHI . COMPND 2 MOLECULE: CRE-BP1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR A.NAGADOI,K.NAKAZAWA,H.UDA,T.MAEKAWA,S.ISHII,Y.NISHIMURA . 38 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3418.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 63.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 15.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 28.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M > 0 0 193 0, 0.0 3,-0.6 0, 0.0 4,-0.1 0.000 360.0 360.0 360.0 179.5 -19.1 3.1 6.2 2 2 A S T 3 + 0 0 137 1,-0.3 2,-0.5 2,-0.1 3,-0.2 0.904 360.0 31.3 -66.8 -41.7 -19.5 1.3 9.5 3 3 A D T 3 + 0 0 100 1,-0.2 -1,-0.3 2,-0.1 0, 0.0 -0.737 67.7 164.6-118.8 78.8 -16.2 -0.6 8.8 4 4 A D < - 0 0 111 -3,-0.6 -1,-0.2 -2,-0.5 3,-0.2 0.852 31.9-153.7 -61.8 -35.1 -14.1 1.7 6.7 5 5 A K - 0 0 107 -3,-0.2 2,-0.3 1,-0.2 -2,-0.1 0.991 12.0-131.3 57.5 76.0 -11.1 -0.6 7.5 6 6 A P - 0 0 81 0, 0.0 2,-1.2 0, 0.0 -1,-0.2 -0.415 14.3-139.7 -60.6 116.5 -8.2 1.9 7.2 7 7 A F E -A 18 0A 52 11,-1.6 11,-1.2 -2,-0.3 2,-0.7 -0.688 19.0-165.5 -84.1 96.5 -5.6 0.1 4.9 8 8 A L E -A 17 0A 121 -2,-1.2 9,-0.2 9,-0.2 2,-0.1 -0.756 17.3-131.5 -87.4 114.5 -2.3 1.0 6.6 9 9 A C - 0 0 9 7,-2.9 2,-1.2 -2,-0.7 16,-0.0 -0.403 8.8-134.4 -65.5 137.5 0.6 0.2 4.2 10 10 A T + 0 0 106 -2,-0.1 -1,-0.1 5,-0.1 -2,-0.0 -0.686 58.6 125.9 -94.4 80.3 3.5 -1.7 5.8 11 11 A A > - 0 0 18 -2,-1.2 4,-0.7 5,-0.1 2,-0.3 -0.997 66.1-102.6-139.5 141.2 6.4 0.3 4.4 12 12 A P T 4 S- 0 0 133 0, 0.0 2,-1.2 0, 0.0 -2,-0.0 -0.461 99.2 -16.8 -66.9 123.8 9.4 2.0 6.2 13 13 A G T 4 S+ 0 0 94 -2,-0.3 0, 0.0 1,-0.2 0, 0.0 -0.048 134.0 68.7 75.5 -36.9 8.9 5.7 6.6 14 14 A C T 4 + 0 0 44 -2,-1.2 -1,-0.2 2,-0.1 -5,-0.1 0.988 54.0 150.9 -76.6 -64.2 6.2 5.7 3.8 15 15 A G < - 0 0 42 -4,-0.7 -5,-0.1 1,-0.1 -2,-0.1 0.806 29.3-178.9 30.8 60.0 3.3 3.8 5.6 16 16 A Q - 0 0 97 -8,-0.1 -7,-2.9 8,-0.1 2,-0.3 -0.271 18.0-131.7 -79.0 170.8 0.6 5.6 3.6 17 17 A R E -A 8 0A 166 -9,-0.2 2,-0.3 -2,-0.0 -9,-0.2 -0.948 21.6-176.8-127.5 146.3 -3.1 5.0 4.1 18 18 A F E -A 7 0A 41 -11,-1.2 -11,-1.6 -2,-0.3 3,-0.0 -0.898 34.9-124.8-138.8 165.7 -5.9 4.3 1.5 19 19 A T S S+ 0 0 100 -2,-0.3 2,-0.3 -13,-0.1 -1,-0.1 0.744 95.5 29.5 -82.1 -27.2 -9.7 3.8 1.4 20 20 A N S > S- 0 0 78 -13,-0.1 4,-0.9 1,-0.1 3,-0.2 -0.865 75.8-121.4-130.7 164.9 -9.4 0.5 -0.4 21 21 A E H > S+ 0 0 97 -2,-0.3 4,-2.6 1,-0.2 5,-0.1 0.704 106.0 73.6 -75.6 -20.9 -6.9 -2.4 -0.6 22 22 A D H > S+ 0 0 103 1,-0.2 4,-1.7 2,-0.2 5,-0.2 0.937 100.4 40.8 -57.5 -50.2 -6.8 -1.8 -4.4 23 23 A H H > S+ 0 0 68 1,-0.2 4,-1.7 2,-0.2 -1,-0.2 0.835 114.6 53.3 -69.1 -32.9 -4.7 1.3 -3.9 24 24 A L H X S+ 0 0 18 -4,-0.9 4,-2.9 2,-0.2 5,-0.2 0.854 105.1 56.7 -68.9 -35.5 -2.7 -0.4 -1.2 25 25 A A H X S+ 0 0 42 -4,-2.6 4,-2.9 2,-0.2 -2,-0.2 0.972 111.4 39.0 -60.7 -58.7 -1.9 -3.3 -3.6 26 26 A V H X S+ 0 0 86 -4,-1.7 4,-1.7 1,-0.2 -1,-0.2 0.863 117.2 53.4 -60.4 -36.9 -0.3 -1.2 -6.4 27 27 A H H X S+ 0 0 16 -4,-1.7 4,-1.2 -5,-0.2 -2,-0.2 0.926 114.8 38.7 -64.4 -47.7 1.4 0.9 -3.7 28 28 A K H X S+ 0 0 30 -4,-2.9 4,-3.1 1,-0.2 5,-0.3 0.870 108.6 64.2 -70.7 -38.7 2.9 -2.1 -1.9 29 29 A H H X S+ 0 0 87 -4,-2.9 4,-2.8 -5,-0.2 -2,-0.2 0.899 106.4 42.2 -52.9 -47.7 3.7 -3.8 -5.2 30 30 A K H < S+ 0 0 126 -4,-1.7 -1,-0.2 2,-0.2 6,-0.2 0.853 114.6 51.6 -71.3 -34.4 6.1 -1.1 -6.3 31 31 A H H >< S+ 0 0 73 -4,-1.2 3,-0.5 -5,-0.2 -2,-0.2 0.954 118.4 36.3 -64.9 -51.0 7.7 -0.8 -2.8 32 32 A E H 3< S+ 0 0 112 -4,-3.1 2,-1.8 1,-0.3 3,-0.3 0.955 117.7 51.2 -67.7 -52.5 8.3 -4.6 -2.6 33 33 A M T >< + 0 0 80 -4,-2.8 3,-2.2 -5,-0.3 -1,-0.3 -0.418 65.1 153.7 -85.3 62.0 9.2 -5.1 -6.3 34 34 A T T < + 0 0 121 -2,-1.8 -1,-0.2 -3,-0.5 -2,-0.1 0.687 64.1 74.1 -62.5 -17.2 11.8 -2.3 -6.2 35 35 A L T > S+ 0 0 122 -3,-0.3 3,-0.5 3,-0.0 -1,-0.3 0.600 70.6 118.8 -71.7 -11.4 13.4 -4.2 -9.1 36 36 A K T < S+ 0 0 72 -3,-2.2 -6,-0.0 1,-0.2 0, 0.0 -0.286 76.9 18.6 -57.9 139.7 10.5 -2.9 -11.3 37 37 A F T 3 0 0 205 1,-0.0 -1,-0.2 0, 0.0 -3,-0.0 0.933 360.0 360.0 61.9 48.9 11.8 -0.8 -14.2 38 38 A G < 0 0 130 -3,-0.5 -2,-0.2 0, 0.0 -3,-0.0 0.295 360.0 360.0-174.3 360.0 15.3 -2.2 -13.9