==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 16-JUN-98 1BIG . COMPND 2 MOLECULE: TOXIN BMTX1; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS MARTENSII; . AUTHOR E.BLANC,R.ROMI-LEBRUN,O.BORNET,T.NAKAJIMA,H.DARBON . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2739.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 48.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 62 0, 0.0 34,-2.2 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0-176.6 2.5 -0.4 -0.5 2 2 A F E -A 34 0A 104 32,-0.2 2,-0.2 2,-0.0 32,-0.2 -0.500 360.0-147.1 -99.3 168.5 4.1 2.7 -2.0 3 3 A T E - 0 0 17 30,-1.4 14,-0.0 -2,-0.2 29,-0.0 -0.792 17.1-141.8-130.5 172.6 2.5 5.9 -3.4 4 4 A D E S+ 0 0 136 -2,-0.2 2,-0.3 28,-0.1 28,-0.1 -0.058 71.1 99.4-126.3 28.3 3.2 8.4 -6.2 5 5 A V E S- 0 0 57 28,-0.1 28,-0.7 1,-0.0 2,-0.2 -0.827 81.5 -93.9-115.8 155.1 2.0 11.5 -4.2 6 6 A K E -A 32 0A 171 -2,-0.3 2,-0.3 26,-0.2 26,-0.2 -0.484 43.8-172.8 -70.8 132.0 4.0 14.1 -2.3 7 7 A a - 0 0 13 24,-1.9 3,-0.1 -2,-0.2 4,-0.0 -0.849 24.5-160.3-123.5 160.3 4.4 13.5 1.4 8 8 A T S S- 0 0 87 1,-0.6 3,-0.1 -2,-0.3 2,-0.1 -0.219 72.2 -43.6-132.8 40.1 5.9 15.6 4.3 9 9 A G S >> S- 0 0 25 1,-0.1 4,-1.5 2,-0.1 3,-0.9 -0.338 80.0 -62.9 115.3 163.2 6.6 12.8 6.8 10 10 A S H 3> S+ 0 0 59 1,-0.2 4,-1.6 18,-0.2 3,-0.3 0.862 125.9 63.4 -43.7 -49.9 4.7 9.8 8.2 11 11 A K H 34 S+ 0 0 157 1,-0.3 3,-0.4 2,-0.2 -1,-0.2 0.870 106.9 41.5 -45.9 -50.1 1.9 11.9 9.6 12 12 A Q H <> S+ 0 0 70 -3,-0.9 4,-1.4 1,-0.2 -1,-0.3 0.804 112.3 57.4 -71.0 -29.3 0.9 13.2 6.2 13 13 A b H X S+ 0 0 0 -4,-1.5 4,-2.3 -3,-0.3 5,-0.2 0.712 93.9 68.2 -74.0 -23.2 1.3 9.7 4.8 14 14 A W H X S+ 0 0 111 -4,-1.6 4,-2.4 -3,-0.4 -1,-0.2 0.979 109.1 31.7 -62.9 -58.8 -1.1 8.1 7.3 15 15 A P H > S+ 0 0 67 0, 0.0 4,-2.5 0, 0.0 5,-0.2 0.889 118.3 57.9 -64.0 -41.4 -4.4 9.8 5.8 16 16 A V H X S+ 0 0 31 -4,-1.4 4,-2.5 1,-0.2 -2,-0.2 0.914 111.4 40.3 -56.1 -45.6 -2.9 9.7 2.3 17 17 A c H X>S+ 0 0 0 -4,-2.3 4,-2.6 2,-0.2 5,-1.7 0.925 110.1 58.8 -70.0 -43.8 -2.5 5.9 2.5 18 18 A K H <5S+ 0 0 128 -4,-2.4 -2,-0.2 4,-0.3 -1,-0.2 0.898 113.7 40.9 -48.4 -43.4 -5.9 5.6 4.3 19 19 A Q H <5S+ 0 0 160 -4,-2.5 -2,-0.2 -5,-0.1 -1,-0.2 0.938 120.5 40.0 -70.8 -52.6 -7.3 7.3 1.1 20 20 A M H <5S- 0 0 88 -4,-2.5 -2,-0.2 -5,-0.2 -3,-0.2 0.951 142.9 -7.1 -64.6 -56.0 -5.2 5.5 -1.5 21 21 A F T <5S- 0 0 92 -4,-2.6 -3,-0.2 -5,-0.2 -4,-0.1 0.800 92.5-108.7-108.9 -57.4 -5.2 1.9 -0.2 22 22 A G S -B 32 0A 81 3,-2.5 3,-2.5 -2,-0.3 -22,-0.1 -0.925 65.3 -50.9-136.5 108.5 10.4 8.4 1.9 30 30 A N T 3 S- 0 0 179 -2,-0.4 3,-0.1 1,-0.3 -22,-0.1 0.758 128.7 -24.3 31.2 46.1 12.1 11.4 0.2 31 31 A G T 3 S+ 0 0 28 1,-0.2 -24,-1.9 -24,-0.0 2,-0.4 0.015 121.6 80.3 118.3 -30.4 8.8 12.6 -1.2 32 32 A K E < S-AB 6 29A 64 -3,-2.5 -3,-2.5 -26,-0.2 -1,-0.2 -0.891 71.6-114.9-118.2 146.9 6.4 9.6 -1.4 33 33 A b E - B 0 28A 0 -28,-0.7 -30,-1.4 -2,-0.4 2,-0.3 -0.278 20.9-158.0 -72.5 156.5 4.3 7.8 1.1 34 34 A R E -AB 2 27A 91 -7,-2.4 -7,-1.4 -32,-0.2 2,-0.2 -0.971 9.7-144.7-133.1 142.7 4.7 4.3 2.3 35 35 A c - 0 0 4 -34,-2.2 -9,-0.2 -2,-0.3 2,-0.2 -0.651 6.9-143.9-109.4 166.3 2.0 2.1 3.9 36 36 A Y 0 0 101 -11,-0.4 -11,-0.1 -13,-0.3 -1,-0.0 -0.564 360.0 360.0-118.4-178.6 2.1 -0.5 6.7 37 37 A S 0 0 182 -2,-0.2 -11,-0.0 -14,-0.0 -1,-0.0 -0.658 360.0 360.0-118.0 360.0 0.3 -3.8 7.4