==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT DEFENSIN 15-JUL-98 1BK8 . COMPND 2 MOLECULE: ANTIMICROBIAL PROTEIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: AESCULUS HIPPOCASTANUM; . AUTHOR F.FANT,F.A.M.BORREMANS . 50 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3150.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 58.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 24.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 14.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 4.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 12.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 154 0, 0.0 2,-1.9 0, 0.0 47,-0.1 0.000 360.0 360.0 360.0 114.8 -10.1 -5.2 10.6 2 2 A a - 0 0 56 48,-0.2 2,-0.7 45,-0.1 47,-0.2 -0.489 360.0-161.0 -78.0 79.9 -6.9 -3.8 8.8 3 3 A N E -A 48 0A 70 -2,-1.9 45,-1.4 45,-0.9 2,-1.3 -0.508 11.3-142.4 -73.3 109.0 -7.0 -5.9 5.6 4 4 A E E -A 47 0A 73 -2,-0.7 43,-0.2 43,-0.2 -1,-0.1 -0.569 28.7-179.2 -73.8 90.0 -3.4 -5.7 4.2 5 5 A R E -A 46 0A 89 41,-2.4 41,-2.6 -2,-1.3 3,-0.2 -0.728 25.9-109.0 -98.1 139.9 -4.3 -5.5 0.5 6 6 A P - 0 0 71 0, 0.0 2,-0.4 0, 0.0 40,-0.2 -0.028 53.7 -57.8 -67.7 172.0 -1.5 -5.3 -2.2 7 7 A S + 0 0 29 1,-0.2 38,-0.1 4,-0.1 17,-0.1 -0.358 58.2 158.6 -55.0 105.5 -0.5 -2.4 -4.4 8 8 A Q S S+ 0 0 91 -2,-0.4 -1,-0.2 -3,-0.2 16,-0.1 0.881 84.7 19.3 -84.9 -61.5 -3.5 -1.3 -6.4 9 9 A T S S+ 0 0 42 14,-0.3 15,-0.1 35,-0.1 -2,-0.1 0.905 115.0 77.5 -74.8 -53.5 -2.4 2.2 -7.2 10 10 A W S S- 0 0 36 13,-0.4 4,-0.1 34,-0.2 33,-0.0 -0.283 71.7-146.1 -64.7 150.4 1.2 1.8 -6.6 11 11 A S - 0 0 96 2,-0.2 33,-0.2 32,-0.0 -4,-0.1 0.544 48.2 -37.8 -90.9-132.0 3.4 0.1 -9.2 12 12 A G S S+ 0 0 40 1,-0.1 32,-0.2 31,-0.1 2,-0.2 0.973 111.3 20.8 -61.8 -95.4 6.5 -2.2 -8.7 13 13 A N - 0 0 93 30,-0.1 2,-0.3 28,-0.1 -2,-0.2 -0.514 64.0-154.9 -92.7 152.6 8.8 -1.2 -5.9 14 14 A b + 0 0 6 28,-0.7 28,-0.1 -2,-0.2 3,-0.1 -0.873 33.1 139.8-127.1 151.2 8.1 1.0 -2.9 15 15 A G + 0 0 61 -2,-0.3 2,-2.4 21,-0.0 3,-0.2 0.204 63.2 75.4-156.7 -51.2 10.3 3.2 -0.6 16 16 A N > + 0 0 97 1,-0.2 4,-2.7 2,-0.1 3,-0.3 -0.462 55.5 170.8 -73.8 75.5 8.4 6.4 0.1 17 17 A T H > S+ 0 0 66 -2,-2.4 4,-2.7 1,-0.2 -1,-0.2 0.797 74.1 62.1 -62.9 -28.7 6.1 4.7 2.6 18 18 A A H > S+ 0 0 68 2,-0.2 4,-1.0 -3,-0.2 -1,-0.2 0.944 109.0 41.6 -59.8 -46.1 4.8 8.1 3.7 19 19 A H H >> S+ 0 0 78 -3,-0.3 4,-2.9 2,-0.2 3,-1.4 0.968 112.7 54.3 -63.0 -52.1 3.6 8.5 0.1 20 20 A c H 3< S+ 0 0 0 -4,-2.7 5,-0.2 1,-0.3 -2,-0.2 0.883 102.9 57.6 -44.0 -46.4 2.3 4.9 0.0 21 21 A D H 3X S+ 0 0 49 -4,-2.7 4,-0.7 12,-0.2 -1,-0.3 0.803 115.7 35.2 -62.9 -31.2 0.3 5.6 3.1 22 22 A K H S+ 0 0 85 -3,-1.4 4,-3.2 -4,-1.0 2,-2.0 0.822 104.7 70.9 -85.2 -36.6 -1.5 8.4 1.3 23 23 A Q H <5S+ 0 0 16 -4,-2.9 -13,-0.4 1,-0.2 -14,-0.3 -0.177 109.7 35.7 -79.0 47.5 -1.5 6.6 -2.1 24 24 A d H 45S+ 0 0 0 -2,-2.0 6,-2.5 -3,-0.2 -1,-0.2 0.165 119.5 46.9-166.3 -48.5 -4.1 4.2 -0.7 25 25 A Q H <5S+ 0 0 72 -4,-0.7 -2,-0.2 4,-0.3 -3,-0.1 0.899 125.7 26.2 -74.5 -49.0 -6.1 6.6 1.6 26 26 A D T <5S+ 0 0 94 -4,-3.2 -3,-0.2 3,-0.1 -1,-0.1 0.920 130.3 35.7 -85.3 -50.2 -6.6 9.4 -0.9 27 27 A W S S-B 41 0A 95 3,-2.2 3,-2.5 -2,-0.3 -2,-0.1 -0.963 74.0 -8.8-141.9 128.4 7.3 -9.6 -0.8 39 39 A E T 3 S- 0 0 164 -2,-0.3 3,-0.1 1,-0.3 -2,-0.0 0.857 130.6 -57.7 48.6 41.2 9.2 -11.9 -3.3 40 40 A N T 3 S+ 0 0 111 1,-0.2 2,-0.5 0, 0.0 -1,-0.3 0.617 118.5 112.6 62.3 20.4 12.0 -9.2 -3.2 41 41 A H E < - B 0 38A 107 -3,-2.5 -3,-2.2 -28,-0.1 2,-0.9 -0.986 65.2-138.9-118.8 119.8 9.6 -6.5 -4.4 42 42 A W E - B 0 37A 114 -2,-0.5 -28,-0.7 -5,-0.3 2,-0.4 -0.708 29.4-170.7 -75.3 104.3 8.7 -3.7 -1.9 43 43 A K E - B 0 36A 36 -7,-2.9 -7,-2.4 -2,-0.9 2,-0.9 -0.825 27.7-125.1 -95.8 140.0 4.9 -3.2 -2.5 44 44 A c E - B 0 35A 0 -2,-0.4 2,-0.4 -9,-0.3 -9,-0.3 -0.758 34.7-159.0 -69.6 106.9 2.9 -0.4 -1.1 45 45 A F E - B 0 34A 17 -11,-2.8 -11,-2.6 -2,-0.9 2,-0.2 -0.794 3.8-142.9 -88.3 142.2 0.2 -2.4 0.7 46 46 A d E -AB 5 33A 0 -41,-2.6 -41,-2.4 -2,-0.4 2,-0.4 -0.654 4.9-150.4 -97.6 156.0 -3.0 -0.6 1.4 47 47 A Y E -AB 4 32A 44 -15,-2.9 -16,-2.1 -2,-0.2 -15,-1.8 -0.948 19.8-174.3-134.2 104.1 -5.0 -1.3 4.6 48 48 A F E +A 3 0A 13 -45,-1.4 -45,-0.9 -2,-0.4 -18,-0.1 -0.420 57.9 11.3 -93.7 178.9 -8.7 -0.8 4.4 49 49 A N 0 0 93 -47,-0.2 -1,-0.2 -2,-0.1 -19,-0.1 0.688 360.0 360.0 32.2 45.9 -11.6 -0.9 6.9 50 50 A a 0 0 100 -3,-0.3 -48,-0.2 -48,-0.1 -1,-0.1 1.000 360.0 360.0 -82.1 360.0 -9.1 -0.9 9.8