==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 03-JUL-98 1BKT . COMPND 2 MOLECULE: BMKTX; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS MARTENSII; . AUTHOR J.G.RENISIO,R.ROMI-LEBRUN,E.BLANC,O.BORNET,T.NAKAJIMA, . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2694.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 51.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 104 0, 0.0 32,-0.1 0, 0.0 34,-0.1 0.000 360.0 360.0 360.0 175.3 2.3 -2.2 0.3 2 2 A G - 0 0 39 32,-0.1 31,-0.3 31,-0.1 25,-0.0 0.430 360.0-176.7 -21.5 148.1 5.6 -1.9 -1.6 3 3 A I - 0 0 47 29,-0.7 -1,-0.1 2,-0.2 10,-0.0 0.463 48.1 -88.6-115.1-103.8 9.0 -1.5 0.0 4 4 A N S S+ 0 0 140 29,-0.0 2,-0.3 2,-0.0 29,-0.1 -0.029 84.7 105.0-173.3 38.6 12.1 -1.0 -2.2 5 5 A V - 0 0 60 27,-0.1 27,-2.4 8,-0.0 2,-0.5 -0.917 64.7-120.7-131.0 158.7 13.3 -4.6 -2.9 6 6 A K B -A 31 0A 120 -2,-0.3 25,-0.3 25,-0.2 2,-0.2 -0.868 34.5-169.6-102.3 125.7 13.2 -6.9 -5.9 7 7 A a - 0 0 5 23,-2.0 3,-0.1 -2,-0.5 6,-0.0 -0.670 31.5-168.8-114.1 167.6 11.4 -10.2 -5.5 8 8 A K S S+ 0 0 151 1,-0.3 2,-0.2 -2,-0.2 -1,-0.1 0.561 82.7 17.3-119.5 -40.0 11.0 -13.5 -7.3 9 9 A H S > S- 0 0 135 21,-0.1 4,-0.6 17,-0.1 -1,-0.3 -0.744 85.3 -99.1-129.8 176.8 8.2 -14.9 -5.0 10 10 A S T 4 S+ 0 0 46 -2,-0.2 15,-0.5 1,-0.2 22,-0.0 0.044 125.2 52.6 -87.5 25.5 5.6 -13.7 -2.5 11 11 A G T > S+ 0 0 27 2,-0.1 4,-2.3 3,-0.1 -1,-0.2 0.571 97.0 61.6-120.0 -50.7 8.1 -14.9 0.2 12 12 A Q T 4 S+ 0 0 84 1,-0.3 -2,-0.2 2,-0.2 20,-0.1 0.709 116.0 37.4 -50.4 -24.7 11.1 -13.0 -1.2 13 13 A b T X S+ 0 0 0 -4,-0.6 4,-2.4 2,-0.1 -1,-0.3 0.735 107.7 63.4 -98.7 -37.4 9.0 -10.0 -0.4 14 14 A L H > S+ 0 0 49 11,-0.2 4,-2.6 2,-0.2 5,-0.3 0.884 100.2 54.1 -58.2 -43.6 7.4 -11.3 2.8 15 15 A K H X S+ 0 0 138 -4,-2.3 4,-2.6 1,-0.2 -1,-0.2 0.955 115.2 36.3 -60.2 -56.1 10.8 -11.4 4.6 16 16 A P H > S+ 0 0 30 0, 0.0 4,-1.4 0, 0.0 -1,-0.2 0.840 116.7 55.5 -67.2 -34.2 11.8 -7.8 3.9 17 17 A c H >X>S+ 0 0 0 -4,-2.4 5,-1.1 2,-0.2 3,-0.7 0.988 114.5 37.6 -59.8 -60.0 8.2 -6.5 4.3 18 18 A K H ><5S+ 0 0 133 -4,-2.6 3,-1.9 1,-0.3 4,-0.5 0.946 118.8 50.4 -52.2 -55.1 7.9 -8.1 7.8 19 19 A D H 3<5S+ 0 0 144 -4,-2.6 -1,-0.3 -5,-0.3 -2,-0.2 0.661 111.1 49.4 -58.2 -23.4 11.5 -7.1 8.6 20 20 A A H <<5S- 0 0 72 -4,-1.4 -1,-0.3 -3,-0.7 -2,-0.2 0.430 137.8 -79.6 -98.0 -1.4 10.7 -3.5 7.4 21 21 A G T <<5S+ 0 0 61 -3,-1.9 -3,-0.3 -4,-0.5 2,-0.2 0.769 94.8 105.4 107.7 39.9 7.6 -3.3 9.6 22 22 A M < - 0 0 49 -5,-1.1 -1,-0.2 -4,-0.5 3,-0.1 -0.517 64.4-124.4-127.2-165.7 4.8 -5.2 7.7 23 23 A R S S- 0 0 117 1,-0.4 2,-0.2 -2,-0.2 -5,-0.2 0.762 78.1 -1.8-111.3 -66.0 3.0 -8.5 8.0 24 24 A F - 0 0 106 11,-0.3 11,-2.0 -7,-0.1 -1,-0.4 -0.678 63.5-123.4-123.9-179.9 3.3 -10.5 4.7 25 25 A G E -B 34 0B 7 -15,-0.5 2,-0.3 9,-0.3 9,-0.2 -0.878 16.4-178.5-126.1 154.6 4.8 -10.1 1.2 26 26 A K E -B 33 0B 95 7,-2.6 7,-2.1 -2,-0.3 2,-0.4 -0.972 22.0-137.0-150.0 136.2 3.5 -10.2 -2.4 27 27 A a E +B 32 0B 27 -2,-0.3 5,-0.2 5,-0.2 -17,-0.1 -0.824 28.9 166.4 -99.5 139.7 5.6 -9.8 -5.5 28 28 A I - 0 0 106 3,-2.4 -1,-0.1 -2,-0.4 4,-0.1 0.728 69.1 -2.2-112.2 -80.8 4.0 -7.7 -8.2 29 29 A N S S- 0 0 124 2,-0.2 3,-0.1 3,-0.1 -2,-0.0 -0.163 122.2 -65.5-110.4 34.5 6.1 -6.4 -11.2 30 30 A G S S+ 0 0 29 1,-0.5 -23,-2.0 -22,-0.0 2,-0.2 0.047 121.6 91.3 103.3 -23.3 9.4 -7.9 -10.1 31 31 A K B S-A 6 0A 86 -25,-0.3 -3,-2.4 1,-0.1 -1,-0.5 -0.559 82.7 -96.9 -99.4 165.1 9.3 -5.5 -7.1 32 32 A b E -B 27 0B 5 -27,-2.4 -29,-0.7 -5,-0.2 2,-0.3 -0.505 30.4-175.6 -88.1 154.0 7.9 -6.2 -3.6 33 33 A D E -B 26 0B 45 -7,-2.1 -7,-2.6 -31,-0.3 2,-0.2 -0.971 16.5-142.4-139.9 143.8 4.5 -5.3 -2.2 34 34 A c E -B 25 0B 4 -2,-0.3 -9,-0.3 -9,-0.2 -32,-0.1 -0.700 15.3-145.6-113.9 167.2 3.4 -5.9 1.5 35 35 A T + 0 0 64 -11,-2.0 -11,-0.3 -2,-0.2 -10,-0.1 -0.508 41.1 177.7-121.4 58.7 0.2 -6.9 3.2 36 36 A P 0 0 40 0, 0.0 -14,-0.1 0, 0.0 -18,-0.0 0.079 360.0 360.0 -68.1 174.3 0.7 -4.9 6.4 37 37 A K 0 0 205 0, 0.0 -15,-0.1 0, 0.0 -2,-0.0 0.749 360.0 360.0 -29.4 360.0 -1.6 -4.5 9.5