==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 16-JUN-98 2BMT . COMPND 2 MOLECULE: TOXIN BMTX2; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS MARTENSII; . AUTHOR E.BLANC,R.ROMI-LEBRUN,O.BORNET,T.NAKAJIMA,H.DARBON . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2523.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 54.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 24.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 78 0, 0.0 34,-2.6 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0-115.3 1.7 -0.8 -1.1 2 2 A F E -A 34 0A 78 32,-0.3 32,-0.2 24,-0.1 2,-0.2 -0.720 360.0-145.7-119.4 169.7 5.3 -1.8 -1.1 3 3 A T E - 0 0 13 30,-1.3 32,-0.0 -2,-0.3 14,-0.0 -0.651 18.3-127.1-127.6-176.1 8.2 -0.4 0.9 4 4 A N E S+ 0 0 155 -2,-0.2 2,-0.4 2,-0.1 30,-0.1 0.032 76.6 92.2-124.5 24.1 11.9 0.2 0.3 5 5 A V E S- 0 0 68 28,-0.1 28,-2.5 1,-0.0 -2,-0.1 -0.918 76.1-111.4-122.5 148.7 13.4 -1.7 3.3 6 6 A S E -A 32 0A 88 -2,-0.4 26,-0.3 26,-0.3 2,-0.3 -0.364 34.5-147.5 -71.6 154.3 14.6 -5.3 3.5 7 7 A a - 0 0 7 24,-1.3 3,-0.1 22,-0.1 -1,-0.0 -0.932 27.1-165.6-129.7 153.8 12.5 -7.7 5.6 8 8 A S S S- 0 0 100 1,-0.5 2,-0.2 -2,-0.3 3,-0.1 -0.189 82.5 -32.8-123.3 33.0 13.2 -10.7 7.8 9 9 A A - 0 0 41 1,-0.1 -1,-0.5 2,-0.1 20,-0.1 -0.523 69.0 -85.8 130.1 166.9 9.5 -11.7 7.8 10 10 A S S >> S+ 0 0 17 18,-0.2 4,-1.7 1,-0.2 3,-1.3 0.815 116.5 67.6 -70.4 -34.4 6.0 -10.2 7.8 11 11 A S G >4 S+ 0 0 59 1,-0.3 3,-0.6 2,-0.2 -1,-0.2 0.947 102.7 42.3 -51.4 -58.1 6.0 -9.7 11.6 12 12 A Q G 34 S+ 0 0 59 1,-0.2 4,-0.3 2,-0.2 -1,-0.3 0.449 111.0 61.5 -71.0 -0.7 8.7 -7.1 11.6 13 13 A b G <> S+ 0 0 0 -3,-1.3 4,-3.1 2,-0.1 5,-0.3 0.773 85.3 72.3 -94.6 -34.8 7.0 -5.5 8.5 14 14 A W H S+ 0 0 51 0, 0.0 4,-2.1 0, 0.0 -1,-0.2 0.841 113.5 52.3 -60.0 -35.3 5.4 -1.9 12.3 16 16 A V H >> S+ 0 0 38 -4,-0.3 4,-2.8 2,-0.2 3,-0.6 0.993 110.2 46.7 -63.8 -59.6 7.1 -0.7 9.1 17 17 A c H 3X>S+ 0 0 0 -4,-3.1 4,-2.8 1,-0.3 5,-1.8 0.862 112.4 52.7 -45.1 -44.8 3.8 -0.6 7.2 18 18 A K H 3<5S+ 0 0 110 -4,-2.2 -1,-0.3 -5,-0.3 -2,-0.2 0.883 111.2 44.6 -62.9 -41.2 2.4 1.2 10.2 19 19 A K H <<5S+ 0 0 165 -4,-2.1 -2,-0.2 -3,-0.6 -1,-0.2 0.918 121.2 39.8 -70.2 -43.3 5.2 3.8 10.1 20 20 A L H <5S+ 0 0 88 -4,-2.8 -2,-0.2 3,-0.1 -3,-0.2 0.929 138.6 4.5 -70.7 -53.6 4.9 4.2 6.3 21 21 A F T <5S- 0 0 94 -4,-2.8 -3,-0.2 2,-0.2 -2,-0.1 0.796 98.0-109.1-103.1 -44.5 1.2 4.1 5.5 22 22 A G S +B 32 0A 89 3,-2.5 3,-2.2 -2,-0.7 -22,-0.1 -0.952 66.3 0.6-125.1 144.2 7.9 -10.2 -0.1 30 30 A N T 3 S- 0 0 112 -2,-0.4 -1,-0.2 1,-0.3 3,-0.1 0.898 127.4 -65.4 39.1 54.6 11.2 -10.4 -2.1 31 31 A S T 3 S+ 0 0 74 -3,-0.2 -24,-1.3 1,-0.1 2,-0.3 0.798 120.6 106.0 38.4 41.4 12.9 -9.9 1.3 32 32 A K E < S-AB 6 29A 52 -3,-2.2 -3,-2.5 -26,-0.3 -26,-0.3 -0.983 77.1-104.4-139.7 145.3 11.4 -6.4 1.3 33 33 A b E - B 0 28A 0 -28,-2.5 -30,-1.3 -2,-0.3 2,-0.3 -0.275 33.3-163.9 -71.8 162.2 8.5 -5.2 3.5 34 34 A R E -AB 2 27A 75 -7,-1.5 -7,-1.2 -32,-0.2 2,-0.3 -0.971 0.6-158.7-142.0 153.2 5.0 -4.7 2.0 35 35 A c E - B 0 26A 1 -34,-2.6 -9,-0.2 -2,-0.3 2,-0.2 -0.893 2.3-162.7-133.5 161.9 2.0 -2.8 3.3 36 36 A Y 0 0 93 -11,-1.2 -11,-0.2 -2,-0.3 -13,-0.1 -0.575 360.0 360.0-128.2-169.8 -1.8 -2.8 2.7 37 37 A S 0 0 132 -2,-0.2 -15,-0.0 -13,-0.1 -1,-0.0 -0.597 360.0 360.0-113.4 360.0 -4.7 -0.4 3.3