==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-MAY-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 08-MAY-13 4BMF . COMPND 2 MOLECULE: ENDOGLUCANASE EG-1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.L.MATTINEN,M.LINDER,T.DRAKENBERG,A.ANNILA . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2688.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 60.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 15.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 21.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 123 0, 0.0 16,-0.1 0, 0.0 15,-0.0 0.000 360.0 360.0 360.0 132.3 -8.2 7.8 -4.7 2 2 A a - 0 0 63 14,-0.3 2,-0.9 1,-0.1 18,-0.4 -0.200 360.0-109.2 -64.2 155.8 -6.3 9.0 -1.5 3 3 A T - 0 0 118 15,-0.1 18,-0.2 16,-0.1 19,-0.1 -0.857 53.2-130.3 -80.4 105.0 -2.6 9.8 -1.1 4 4 A Q B -a 21 0A 2 16,-1.9 18,-1.9 -2,-0.9 4,-0.1 -0.374 17.1-121.3 -74.2 137.5 -2.0 6.7 1.0 5 5 A T - 0 0 96 16,-0.2 32,-0.2 2,-0.2 2,-0.2 -0.102 39.8 -75.2 -68.4 171.1 -0.1 7.0 4.3 6 6 A H S S+ 0 0 68 15,-0.1 32,-0.2 1,-0.1 -1,-0.1 -0.523 122.2 28.3 -62.6 130.0 3.1 5.3 5.5 7 7 A W S S+ 0 0 157 30,-1.7 2,-0.3 -2,-0.2 -2,-0.2 0.933 88.7 146.5 64.2 96.1 2.0 1.7 6.2 8 8 A G - 0 0 9 -4,-0.1 29,-1.3 29,-0.1 2,-0.6 -0.849 49.1-119.4-167.6 119.2 -0.9 1.2 3.8 9 9 A Q B +B 36 0B 67 -2,-0.3 27,-0.2 27,-0.2 25,-0.1 -0.530 40.6 153.8 -69.9 112.0 -2.2 -1.8 1.9 10 10 A b + 0 0 39 25,-2.3 -1,-0.2 -2,-0.6 5,-0.2 0.797 69.6 66.3 -90.3 -47.4 -2.2 -1.3 -1.9 11 11 A G S S+ 0 0 18 24,-1.3 23,-0.2 20,-0.1 25,-0.1 0.760 71.5 100.2 -39.0 -56.4 -1.9 -5.1 -2.7 12 12 A G > - 0 0 10 21,-0.9 2,-2.0 23,-0.2 3,-1.5 -0.187 69.3-139.3 -55.3 121.1 -5.3 -6.4 -1.3 13 13 A I T 3 S+ 0 0 139 1,-0.2 -1,-0.1 0, 0.0 -2,-0.1 -0.574 102.6 46.4 -77.7 75.5 -7.9 -7.0 -4.2 14 14 A G T 3 S+ 0 0 78 -2,-2.0 -1,-0.2 1,-0.2 -2,-0.1 0.123 82.0 125.3 171.1 -40.1 -10.5 -5.6 -1.9 15 15 A Y S < S- 0 0 87 -3,-1.5 2,-2.0 -5,-0.2 -1,-0.2 0.025 74.4 -94.9 -51.8 153.7 -8.9 -2.4 -0.5 16 16 A S - 0 0 106 1,-0.1 2,-2.0 2,-0.1 -14,-0.3 -0.448 64.8 -88.0 -78.8 69.0 -10.5 1.1 -0.8 17 17 A G S S+ 0 0 53 -2,-2.0 2,-0.2 -16,-0.1 -1,-0.1 -0.369 89.0 112.0 82.4 -66.6 -8.8 2.4 -4.0 18 18 A a + 0 0 8 -2,-2.0 -15,-0.1 1,-0.2 -2,-0.1 -0.338 15.6 150.0 -71.1 120.5 -5.6 4.1 -2.9 19 19 A K + 0 0 97 -2,-0.2 2,-1.5 -17,-0.2 8,-0.2 0.576 44.9 105.3-106.0 -27.6 -2.2 2.5 -3.9 20 20 A T - 0 0 81 -18,-0.4 -16,-1.9 6,-0.1 6,-0.1 -0.464 62.2-152.7 -72.1 86.6 -0.2 5.8 -4.1 21 21 A c B -a 4 0A 16 -2,-1.5 -16,-0.2 -18,-0.2 3,-0.1 -0.217 26.8-100.4 -50.8 142.1 2.0 5.7 -0.9 22 22 A T > - 0 0 58 -18,-1.9 3,-2.1 1,-0.2 -1,-0.1 -0.016 57.9 -56.3 -69.2 172.7 2.9 9.3 0.4 23 23 A S T 3 S+ 0 0 119 1,-0.3 -1,-0.2 -17,-0.0 3,-0.1 -0.286 130.2 22.4 -55.8 127.5 6.3 11.0 -0.2 24 24 A G T 3 S+ 0 0 82 1,-0.2 2,-0.3 -3,-0.1 -1,-0.3 -0.197 113.2 84.1 102.9 -36.8 9.2 8.8 1.2 25 25 A T < - 0 0 12 -3,-2.1 2,-0.3 12,-0.1 -1,-0.2 -0.810 50.3-178.7-106.3 139.3 7.0 5.6 1.0 26 26 A T - 0 0 86 -2,-0.3 12,-2.1 10,-0.1 2,-1.2 -0.932 46.5 -91.2-127.5 153.5 6.4 3.2 -2.0 27 27 A b E -C 37 0B 35 -2,-0.3 2,-0.3 10,-0.2 10,-0.3 -0.527 47.1-159.2 -75.5 94.6 4.1 0.1 -1.9 28 28 A Q E -C 36 0B 77 8,-2.3 8,-2.3 -2,-1.2 2,-0.2 -0.613 12.7-126.6 -81.9 128.5 6.6 -2.7 -0.9 29 29 A Y E +C 35 0B 141 -2,-0.3 6,-0.2 6,-0.3 3,-0.1 -0.548 47.5 142.5 -83.3 136.6 5.6 -6.3 -1.8 30 30 A S S S+ 0 0 89 4,-1.1 2,-0.2 1,-0.9 5,-0.2 0.437 80.5 3.3-124.8 -69.1 5.4 -9.2 0.6 31 31 A N S S- 0 0 79 3,-2.1 -1,-0.9 1,-0.1 -20,-0.1 -0.662 77.3-109.3-103.2 169.0 2.3 -11.1 -0.6 32 32 A D S S+ 0 0 96 -2,-0.2 3,-0.2 1,-0.2 -1,-0.1 0.934 123.9 34.5 -56.1 -52.7 -0.0 -10.4 -3.6 33 33 A Y S S+ 0 0 134 1,-0.2 -21,-0.9 -21,-0.1 2,-0.6 0.683 118.2 57.0 -81.6 -24.5 -2.8 -9.3 -1.2 34 34 A Y + 0 0 109 -23,-0.2 -3,-2.1 -22,-0.1 -4,-1.1 -0.798 61.1 144.7-112.7 85.7 -0.4 -7.8 1.4 35 35 A S E - C 0 29B 9 -2,-0.6 -25,-2.3 -6,-0.2 -24,-1.3 -0.999 32.1-166.6-116.7 120.0 1.7 -5.1 -0.4 36 36 A Q E -BC 9 28B 38 -8,-2.3 -8,-2.3 -2,-0.4 2,-0.3 -0.875 27.0-105.3-121.9 141.8 2.4 -2.3 2.1 37 37 A c E C 0 27B 0 -29,-1.3 -30,-1.7 -2,-0.3 -10,-0.2 -0.484 360.0 360.0 -62.0 118.4 3.6 1.4 2.0 38 38 A L 0 0 89 -12,-2.1 -1,-0.2 -2,-0.3 -11,-0.2 0.443 360.0 360.0-146.6 360.0 7.2 1.4 3.4