==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NUCLEOTIDYLTRANSFERASE (DNA-BINDING) 25-APR-96 1BNP . COMPND 2 MOLECULE: DNA POLYMERASE BETA; . SOURCE 2 ORGANISM_SCIENTIFIC: RATTUS NORVEGICUS; . AUTHOR D.-J.LIU,R.PRASAD,S.H.WILSON,E.F.DEROSE,G.P.MULLEN . 87 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7537.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 39 44.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 9.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 27 31.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 208 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 125.5 20.5 -7.5 -5.2 2 2 A S + 0 0 102 1,-0.0 0, 0.0 0, 0.0 0, 0.0 0.964 360.0 174.5 60.0 87.0 22.8 -6.8 -2.2 3 3 A K - 0 0 186 0, 0.0 -1,-0.0 0, 0.0 0, 0.0 0.935 66.5 -46.4 -88.5 -62.1 23.7 -3.1 -2.5 4 4 A R S S- 0 0 225 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.475 107.4 -32.8-138.0 -61.9 25.7 -2.3 0.6 5 5 A K - 0 0 164 2,-0.0 0, 0.0 0, 0.0 0, 0.0 -0.503 55.7-166.4-172.1 95.0 24.0 -3.7 3.8 6 6 A A - 0 0 74 1,-0.1 3,-0.0 -2,-0.1 0, 0.0 -0.564 35.2 -96.5 -86.4 153.9 20.3 -4.0 4.4 7 7 A P - 0 0 83 0, 0.0 3,-0.2 0, 0.0 -1,-0.1 -0.101 23.8-132.1 -61.3 165.0 18.8 -4.6 7.8 8 8 A Q S S+ 0 0 149 2,-0.2 3,-0.1 1,-0.2 -2,-0.0 0.862 104.7 25.9 -89.2 -40.3 17.9 -8.2 8.8 9 9 A E S S- 0 0 167 1,-0.3 -1,-0.2 2,-0.0 -3,-0.0 -0.133 112.4-115.6-113.6 37.3 14.3 -7.5 10.2 10 10 A T - 0 0 103 -3,-0.2 -1,-0.3 4,-0.0 -2,-0.2 0.131 32.5 -90.0 52.8-179.8 13.7 -4.3 8.1 11 11 A L - 0 0 136 -4,-0.1 41,-0.1 -3,-0.1 -3,-0.0 0.875 63.2 -79.8 -90.3 -83.1 13.3 -1.0 9.9 12 12 A N S S+ 0 0 92 39,-0.2 41,-0.1 0, 0.0 40,-0.1 0.334 108.5 50.2-150.7 -59.6 9.6 -0.4 10.8 13 13 A G + 0 0 7 38,-0.1 39,-0.2 37,-0.1 38,-0.1 0.889 47.8 162.6 -57.0-104.7 7.4 0.9 7.9 14 14 A G > + 0 0 21 37,-0.9 4,-1.1 63,-0.0 38,-0.1 0.831 30.7 131.9 84.7 33.0 7.9 -1.3 4.8 15 15 A I H > S+ 0 0 2 36,-0.4 4,-1.8 2,-0.2 5,-0.3 0.965 70.2 40.7 -80.8 -63.2 4.6 0.1 3.2 16 16 A T H > S+ 0 0 24 1,-0.2 4,-1.6 30,-0.2 -1,-0.1 0.718 113.8 59.8 -60.9 -17.9 5.7 1.0 -0.3 17 17 A D H > S+ 0 0 108 2,-0.2 4,-1.1 1,-0.2 -1,-0.2 0.953 110.9 35.3 -76.9 -50.8 7.8 -2.3 -0.3 18 18 A M H X S+ 0 0 82 -4,-1.1 4,-1.2 2,-0.2 -2,-0.2 0.703 119.5 53.1 -77.1 -16.3 4.9 -4.7 0.3 19 19 A L H X S+ 0 0 2 -4,-1.8 4,-1.3 2,-0.2 3,-0.2 0.934 111.0 43.5 -82.2 -48.6 2.6 -2.6 -1.9 20 20 A V H X S+ 0 0 55 -4,-1.6 4,-1.4 -5,-0.3 -2,-0.2 0.775 108.6 63.5 -65.7 -23.2 4.9 -2.4 -4.9 21 21 A E H < S+ 0 0 93 -4,-1.1 4,-0.5 2,-0.2 -1,-0.2 0.945 98.6 51.5 -68.3 -45.9 5.5 -6.2 -4.3 22 22 A L H >< S+ 0 0 21 -4,-1.2 3,-1.1 1,-0.3 4,-0.3 0.903 111.0 49.0 -59.3 -36.6 1.8 -7.1 -5.0 23 23 A A H >< S+ 0 0 4 -4,-1.3 3,-0.6 1,-0.2 -1,-0.3 0.842 106.9 55.9 -71.6 -28.9 2.0 -5.1 -8.2 24 24 A N T 3< S+ 0 0 105 -4,-1.4 -1,-0.2 1,-0.2 -2,-0.2 0.509 75.2 107.3 -79.4 -1.9 5.3 -7.0 -9.0 25 25 A F T < + 0 0 87 -3,-1.1 -1,-0.2 -4,-0.5 3,-0.2 0.895 48.2 177.1 -42.1 -47.2 3.3 -10.3 -8.6 26 26 A E S < S+ 0 0 112 -3,-0.6 -1,-0.2 3,-0.4 4,-0.1 0.781 70.4 47.8 46.3 27.2 3.5 -10.7 -12.5 27 27 A K S S+ 0 0 198 2,-0.3 -1,-0.2 3,-0.1 -2,-0.1 0.218 116.4 26.5-153.1 -69.8 1.7 -14.1 -12.0 28 28 A N S S+ 0 0 140 1,-0.2 2,-0.6 -3,-0.2 -2,-0.1 0.828 124.3 53.7 -76.2 -29.4 -1.4 -14.1 -9.7 29 29 A V S S- 0 0 14 -7,-0.1 -3,-0.4 1,-0.1 -2,-0.3 -0.907 83.0-147.9-109.5 115.5 -2.0 -10.4 -10.5 30 30 A S - 0 0 64 -2,-0.6 -4,-0.3 -4,-0.1 -3,-0.1 0.303 30.8 -98.5 -60.0-160.2 -2.2 -9.6 -14.3 31 31 A Q S S+ 0 0 113 1,-0.1 -1,-0.1 -5,-0.1 -8,-0.0 -0.020 112.4 31.9-117.1 30.8 -1.0 -6.2 -15.6 32 32 A A S S+ 0 0 92 0, 0.0 2,-0.1 0, 0.0 -1,-0.1 0.176 79.8 130.0-172.3 31.7 -4.4 -4.4 -15.9 33 33 A I > - 0 0 59 -3,-0.1 4,-1.9 1,-0.1 5,-0.1 -0.500 61.0-122.8 -91.0 165.2 -6.8 -5.6 -13.1 34 34 A H H > S+ 0 0 170 2,-0.2 4,-0.8 1,-0.2 -1,-0.1 0.968 115.9 42.6 -71.8 -51.5 -8.7 -3.3 -10.8 35 35 A K H >> S+ 0 0 140 1,-0.2 4,-0.8 2,-0.2 3,-0.5 0.872 111.1 59.6 -61.7 -33.6 -7.3 -4.8 -7.6 36 36 A Y H >> S+ 0 0 43 1,-0.2 3,-0.9 2,-0.2 4,-0.7 0.954 106.6 44.0 -60.2 -50.0 -3.9 -4.8 -9.4 37 37 A N H 3X S+ 0 0 72 -4,-1.9 4,-2.0 1,-0.2 5,-0.3 0.606 97.9 78.4 -72.5 -8.4 -4.0 -1.0 -9.9 38 38 A A H X S+ 0 0 121 -4,-2.0 4,-1.3 1,-0.2 3,-0.7 0.932 119.6 47.5 -68.2 -43.5 -2.0 4.1 -6.9 42 42 A A H 3X S+ 0 0 0 -4,-1.2 4,-1.4 22,-0.3 23,-0.2 0.859 108.6 56.3 -66.3 -31.6 -1.8 3.5 -3.2 43 43 A A H 3X S+ 0 0 7 -4,-1.1 4,-1.6 1,-0.2 5,-0.3 0.730 102.0 57.3 -72.5 -19.4 2.0 2.8 -3.6 44 44 A S H S+ 0 0 38 -2,-0.2 4,-0.5 1,-0.1 18,-0.1 -0.071 93.0 96.2-112.2 33.8 -3.7 2.4 10.1 57 57 A A H > S+ 0 0 62 2,-0.2 4,-1.3 3,-0.1 -1,-0.1 0.829 77.3 56.8 -90.2 -35.7 -4.7 6.1 10.4 58 58 A E H > S+ 0 0 69 1,-0.2 4,-1.2 2,-0.2 3,-0.4 0.922 104.1 53.8 -62.5 -41.8 -2.1 7.5 8.0 59 59 A A H 4 S+ 0 0 3 1,-0.2 3,-0.4 2,-0.2 -1,-0.2 0.884 103.2 57.6 -61.4 -35.4 -3.4 5.2 5.2 60 60 A K H < S+ 0 0 149 -4,-0.5 -1,-0.2 1,-0.2 -2,-0.2 0.874 101.9 55.4 -63.8 -33.8 -6.9 6.6 5.8 61 61 A K H < S+ 0 0 166 -4,-1.3 -1,-0.2 -3,-0.4 -2,-0.2 0.827 92.4 82.3 -68.7 -28.9 -5.5 10.1 5.1 62 62 A L < - 0 0 11 -4,-1.2 3,-0.0 -3,-0.4 -17,-0.0 -0.683 68.5-158.5 -79.7 114.6 -4.2 8.9 1.7 63 63 A P S S+ 0 0 122 0, 0.0 -1,-0.2 0, 0.0 4,-0.2 0.805 93.2 54.8 -62.6 -28.0 -7.1 9.0 -0.8 64 64 A G S > S+ 0 0 18 -23,-0.1 2,-0.6 1,-0.1 3,-0.5 0.919 105.2 55.2 -72.8 -42.5 -5.2 6.5 -2.9 65 65 A V T 3 S+ 0 0 1 -23,-0.2 -3,-0.1 -6,-0.2 -1,-0.1 -0.807 87.1 65.6 -94.7 122.9 -4.8 3.9 -0.1 66 66 A G T 3 + 0 0 27 -2,-0.6 2,-1.8 -5,-0.1 -1,-0.2 0.141 62.2 102.0 156.3 -24.7 -8.1 2.9 1.5 67 67 A T S < S- 0 0 104 -3,-0.5 -25,-0.1 1,-0.2 -3,-0.0 -0.516 120.9 -52.0 -85.9 74.7 -10.1 1.1 -1.2 68 68 A K S S+ 0 0 181 -2,-1.8 4,-0.4 1,-0.1 -1,-0.2 0.353 132.8 87.3 76.8 -8.6 -9.4 -2.5 0.1 69 69 A I >> + 0 0 2 1,-0.2 4,-1.8 2,-0.2 3,-0.9 0.763 68.8 73.1 -91.3 -26.9 -5.7 -1.7 0.1 70 70 A A H 3> S+ 0 0 27 1,-0.3 4,-1.2 2,-0.2 5,-0.2 0.824 88.8 64.2 -56.7 -28.1 -5.6 -0.3 3.6 71 71 A E H 3> S+ 0 0 141 1,-0.2 4,-1.2 2,-0.2 3,-0.3 0.924 103.6 45.3 -63.1 -41.5 -6.1 -3.8 4.9 72 72 A K H <> S+ 0 0 83 -3,-0.9 4,-1.4 -4,-0.4 5,-0.3 0.884 104.6 62.4 -69.8 -35.5 -2.6 -4.8 3.5 73 73 A I H X S+ 0 0 2 -4,-1.8 4,-1.1 1,-0.3 -1,-0.2 0.838 108.2 44.0 -59.5 -28.3 -1.1 -1.6 4.9 74 74 A D H < S+ 0 0 66 -4,-1.2 4,-0.3 -3,-0.3 -1,-0.3 0.757 100.1 70.7 -86.8 -25.4 -2.0 -3.0 8.4 75 75 A E H < S+ 0 0 117 -4,-1.2 3,-0.3 1,-0.2 4,-0.3 0.908 112.1 29.6 -58.8 -39.9 -0.8 -6.5 7.5 76 76 A F H >< S+ 0 0 26 -4,-1.4 3,-0.5 1,-0.2 -1,-0.2 0.832 125.7 46.8 -87.0 -36.0 2.8 -5.2 7.6 77 77 A L T 3< S+ 0 0 6 -4,-1.1 3,-0.4 -5,-0.3 -2,-0.2 0.154 91.8 85.3 -91.2 20.3 2.1 -2.5 10.2 78 78 A A T 3 S+ 0 0 57 -3,-0.3 3,-0.2 -4,-0.3 -1,-0.2 0.792 89.8 45.9 -90.4 -30.3 0.2 -4.9 12.4 79 79 A T S < S+ 0 0 103 -3,-0.5 3,-0.3 -4,-0.3 -1,-0.2 0.007 84.0 99.7 -99.9 29.7 3.2 -6.3 14.2 80 80 A G + 0 0 37 -3,-0.4 -1,-0.2 -26,-0.2 -2,-0.1 0.011 57.3 87.2-102.1 29.1 4.7 -2.9 14.8 81 81 A K + 0 0 140 -3,-0.2 -1,-0.2 2,-0.0 2,-0.1 -0.112 55.5 138.9-117.0 36.4 3.5 -2.6 18.4 82 82 A L - 0 0 131 -3,-0.3 -3,-0.0 1,-0.1 -2,-0.0 -0.466 58.6-102.2 -79.2 153.6 6.4 -4.4 20.2 83 83 A R - 0 0 196 -2,-0.1 -1,-0.1 1,-0.1 -2,-0.0 -0.251 18.3-145.2 -69.7 163.5 7.7 -3.0 23.5 84 84 A K - 0 0 184 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 -0.047 51.8 -91.5-120.6 31.7 10.9 -0.9 23.5 85 85 A L - 0 0 156 1,-0.1 2,-0.4 2,-0.1 0, 0.0 0.878 42.6-133.2 59.6 103.4 12.3 -2.0 26.8 86 86 A E 0 0 158 1,-0.2 -1,-0.1 0, 0.0 -3,-0.0 -0.733 360.0 360.0 -90.2 132.8 11.1 0.4 29.6 87 87 A K 0 0 261 -2,-0.4 -1,-0.2 0, 0.0 -2,-0.1 0.597 360.0 360.0 60.0 360.0 13.8 1.6 32.0