==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 21-JUL-94 1BON . COMPND 2 MOLECULE: BOMBYXIN-II,BOMBYXIN A-2; . SOURCE 2 ORGANISM_SCIENTIFIC: BOMBYX MORI; . AUTHOR K.NAGATA,H.HATANAKA,D.KOHDA,F.INAGAKI,STRUCTURAL PROTEOMICS . 48 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4012.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 52.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 4.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 14.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 27.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 4.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 93 0, 0.0 3,-0.6 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 125.3 -0.2 5.1 -12.1 2 2 A I T >> + 0 0 20 1,-0.2 4,-1.9 2,-0.1 3,-1.4 0.569 360.0 83.2 -76.8 -6.2 1.2 2.3 -10.0 3 3 A V H 3>>S+ 0 0 48 1,-0.3 4,-2.6 2,-0.2 5,-0.8 0.929 87.1 51.3 -64.2 -43.2 -0.5 3.8 -6.9 4 4 A D H <45S+ 0 0 82 -3,-0.6 -1,-0.3 1,-0.2 -2,-0.1 0.336 113.2 50.2 -76.5 11.5 -3.8 2.1 -7.7 5 5 A E H <45S+ 0 0 62 -3,-1.4 4,-0.3 3,-0.1 -2,-0.2 0.651 118.6 31.1-115.8 -34.3 -1.8 -1.0 -7.9 6 6 A a H <5S+ 0 0 0 -4,-1.9 23,-0.2 -3,-0.2 -2,-0.2 0.830 126.4 41.4 -93.4 -38.4 0.2 -0.9 -4.6 7 7 A b T <5S+ 0 0 53 -4,-2.6 -3,-0.2 -5,-0.3 22,-0.1 0.979 122.9 38.0 -71.8 -55.8 -2.3 1.0 -2.5 8 8 A L S > - 0 0 3 15,-0.2 5,-0.7 -5,-0.1 4,-0.6 0.076 18.3-178.9-179.4 18.8 2.6 -5.3 -5.4 12 12 A S T >45 - 0 0 66 3,-0.2 3,-1.5 2,-0.2 4,-0.4 0.002 53.1 -82.4 -35.4 137.3 5.3 -6.9 -3.3 13 13 A V T 3>5S+ 0 0 61 1,-0.3 4,-3.0 12,-0.3 3,-0.4 0.625 130.7 68.2 -13.3 -51.8 8.8 -6.5 -4.8 14 14 A D T 345S+ 0 0 139 1,-0.3 -1,-0.3 2,-0.2 -2,-0.2 0.396 111.2 36.7 -62.9 14.0 8.2 -9.4 -7.1 15 15 A V T <<5S+ 0 0 57 -3,-1.5 3,-0.4 -4,-0.6 4,-0.3 0.529 116.4 47.7-131.9 -31.4 5.7 -7.1 -8.7 16 16 A L T >>> S+ 0 0 200 1,-0.3 3,-2.0 -3,-0.1 4,-1.9 -0.252 114.8 69.1 62.5 -67.9 4.7 10.0 -4.6 34 10 B H T 34 S+ 0 0 104 -2,-3.6 4,-0.3 -3,-0.3 -1,-0.3 0.655 98.4 56.1 -55.0 -9.7 6.0 7.3 -2.3 35 11 B L T 3> S+ 0 0 6 2,-0.2 4,-1.5 3,-0.1 -1,-0.3 0.727 101.7 53.9 -92.2 -26.7 5.6 5.3 -5.4 36 12 B A T <4 S+ 0 0 73 -3,-2.0 4,-0.3 1,-0.2 -2,-0.2 0.856 109.3 47.2 -75.4 -33.6 7.8 7.6 -7.5 37 13 B R T < S+ 0 0 187 -4,-1.9 -1,-0.2 1,-0.2 -2,-0.2 0.723 107.2 61.7 -78.4 -19.7 10.6 7.3 -5.0 38 14 B T T >> S+ 0 0 24 -5,-0.3 3,-2.4 -4,-0.3 4,-1.7 0.971 103.9 42.8 -71.0 -55.7 10.2 3.5 -5.0 39 15 B L H 3X S+ 0 0 37 -4,-1.5 4,-1.3 1,-0.3 -1,-0.2 0.600 112.8 57.8 -67.5 -5.8 10.9 2.8 -8.6 40 16 B A H 34 S+ 0 0 49 -4,-0.3 -1,-0.3 2,-0.2 -2,-0.2 0.445 108.3 45.2 -97.5 -6.8 13.7 5.2 -8.2 41 17 B D H <> S+ 0 0 81 -3,-2.4 4,-0.9 3,-0.1 -2,-0.2 0.575 120.1 39.3-106.1 -22.7 15.0 3.0 -5.5 42 18 B L H X S+ 0 0 18 -4,-1.7 4,-1.7 2,-0.2 3,-0.3 0.881 112.3 51.0 -93.0 -52.2 14.5 -0.2 -7.4 43 19 B c H X S+ 0 0 58 -4,-1.3 4,-0.6 1,-0.3 -3,-0.1 0.784 109.9 61.2 -54.8 -18.6 15.6 1.0 -10.8 44 20 B W H >> S+ 0 0 146 2,-0.2 3,-1.1 1,-0.2 4,-0.8 0.941 101.8 44.3 -72.1 -50.4 18.4 2.1 -8.6 45 21 B E H 3< S+ 0 0 157 -4,-0.9 -2,-0.2 -3,-0.3 -1,-0.2 0.665 110.6 60.4 -70.7 -10.6 19.3 -1.4 -7.5 46 22 B A H 3< S- 0 0 83 -4,-1.7 -1,-0.3 1,-0.1 -2,-0.2 0.692 134.6 -13.3 -87.6 -20.2 18.9 -2.4 -11.1 47 23 B G H << - 0 0 37 -3,-1.1 -2,-0.2 -4,-0.6 -1,-0.1 -0.046 56.5-179.4-178.2 62.6 21.7 0.0 -12.3 48 24 B V < 0 0 83 -4,-0.8 -3,-0.1 1,-0.3 -4,-0.1 0.700 360.0 360.0 -45.4 -15.4 22.9 2.6 -9.8 49 25 B D 0 0 218 -5,-0.1 -1,-0.3 -3,-0.0 -5,-0.1 0.778 360.0 360.0 -43.2 360.0 25.1 3.6 -12.7