==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 21-DEC-07 3BS3 . COMPND 2 MOLECULE: PUTATIVE DNA-BINDING PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BACTEROIDES FRAGILIS; . AUTHOR M.E.CUFF,L.BIGELOW,S.CLANCY,A.JOACHIMIAK,MIDWEST CENTER FOR . 62 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4211.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 66.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 11.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 26 41.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 4 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 7 A X 0 0 220 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 149.0 4.8 55.3 5.2 2 8 A X + 0 0 136 59,-0.0 2,-0.2 2,-0.0 59,-0.0 -0.975 360.0 169.4-144.4 125.2 5.1 53.6 1.8 3 9 A L - 0 0 54 59,-2.9 59,-2.8 -2,-0.3 2,-0.3 -0.630 29.0-107.4-123.3-178.1 6.4 50.2 1.1 4 10 A N B -A 61 0A 9 57,-0.3 57,-0.3 30,-0.2 3,-0.2 -0.809 3.8-150.5-113.6 162.4 6.6 47.8 -1.8 5 11 A R > + 0 0 78 55,-2.3 4,-2.5 -2,-0.3 5,-0.3 0.022 57.5 121.9-112.7 21.8 4.7 44.6 -2.6 6 12 A I H > S+ 0 0 0 54,-0.4 4,-2.8 1,-0.2 5,-0.2 0.889 71.9 53.8 -59.2 -38.7 7.4 42.9 -4.6 7 13 A K H > S+ 0 0 127 28,-0.3 4,-1.7 27,-0.2 -1,-0.2 0.931 112.1 43.9 -62.7 -42.6 7.7 39.9 -2.4 8 14 A V H > S+ 0 0 55 -3,-0.2 4,-2.5 2,-0.2 -1,-0.2 0.936 115.5 47.3 -68.0 -46.0 4.0 39.1 -2.6 9 15 A V H X S+ 0 0 3 -4,-2.5 4,-2.5 1,-0.2 -2,-0.2 0.894 108.3 55.4 -66.2 -40.9 3.7 39.7 -6.4 10 16 A L H <>S+ 0 0 5 -4,-2.8 5,-2.4 -5,-0.3 -1,-0.2 0.924 111.4 45.5 -51.3 -46.9 6.8 37.6 -7.1 11 17 A A H ><5S+ 0 0 70 -4,-1.7 3,-1.2 -5,-0.2 -2,-0.2 0.921 112.4 49.9 -65.6 -43.2 5.1 34.7 -5.2 12 18 A E H 3<5S+ 0 0 129 -4,-2.5 -1,-0.2 1,-0.3 -2,-0.2 0.850 113.7 46.1 -63.7 -36.8 1.8 35.3 -7.0 13 19 A K T 3<5S- 0 0 100 -4,-2.5 -1,-0.3 -5,-0.2 -2,-0.2 0.301 112.2-120.4 -89.1 5.0 3.6 35.3 -10.4 14 20 A Q T < 5 + 0 0 179 -3,-1.2 2,-0.3 1,-0.2 -3,-0.2 0.946 67.5 132.3 55.5 53.9 5.7 32.2 -9.5 15 21 A R < - 0 0 107 -5,-2.4 2,-0.2 -6,-0.1 -1,-0.2 -0.929 46.7-132.4-131.7 156.2 9.0 34.0 -10.0 16 22 A T > - 0 0 79 -2,-0.3 4,-2.2 1,-0.1 5,-0.2 -0.687 23.9-114.1-108.4 162.7 12.1 34.0 -7.7 17 23 A N H > S+ 0 0 47 -2,-0.2 4,-2.8 1,-0.2 5,-0.2 0.911 118.0 55.1 -54.8 -43.6 14.4 36.8 -6.4 18 24 A R H > S+ 0 0 149 1,-0.2 4,-2.6 2,-0.2 -1,-0.2 0.911 107.2 48.9 -58.5 -45.9 17.2 35.3 -8.6 19 25 A W H > S+ 0 0 49 2,-0.2 4,-2.6 1,-0.2 -1,-0.2 0.938 112.7 47.1 -60.4 -46.2 15.2 35.5 -11.7 20 26 A L H X S+ 0 0 0 -4,-2.2 4,-1.9 1,-0.2 -2,-0.2 0.930 111.7 50.3 -64.8 -44.3 14.2 39.1 -11.1 21 27 A A H X>S+ 0 0 3 -4,-2.8 5,-2.2 1,-0.2 4,-1.1 0.922 111.2 49.4 -58.0 -46.3 17.8 40.1 -10.2 22 28 A E H ><5S+ 0 0 133 -4,-2.6 3,-0.6 1,-0.2 -2,-0.2 0.918 111.5 48.3 -61.2 -44.6 19.0 38.5 -13.4 23 29 A Q H 3<5S+ 0 0 92 -4,-2.6 -1,-0.2 1,-0.2 -2,-0.2 0.822 116.9 43.3 -63.3 -30.3 16.4 40.3 -15.5 24 30 A X H 3<5S- 0 0 24 -4,-1.9 -1,-0.2 -5,-0.2 -2,-0.2 0.531 106.0-122.4 -93.0 -12.2 17.2 43.6 -13.9 25 31 A G T <<5S+ 0 0 73 -4,-1.1 2,-0.3 -3,-0.6 -3,-0.2 0.833 72.6 125.0 66.1 34.7 21.0 43.3 -14.0 26 32 A K < - 0 0 66 -5,-2.2 -1,-0.3 -6,-0.2 -2,-0.1 -0.792 68.4 -92.9-119.6 163.9 21.1 43.8 -10.2 27 33 A S > - 0 0 61 -2,-0.3 4,-1.7 1,-0.1 5,-0.2 -0.382 29.0-124.0 -72.8 152.2 22.5 41.7 -7.4 28 34 A E H > S+ 0 0 103 1,-0.2 4,-2.8 2,-0.2 5,-0.2 0.861 113.5 60.6 -63.6 -32.3 20.2 39.1 -5.7 29 35 A N H > S+ 0 0 102 2,-0.2 4,-2.4 1,-0.2 -1,-0.2 0.913 101.7 51.7 -57.7 -47.8 21.0 40.9 -2.4 30 36 A T H > S+ 0 0 46 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.939 112.8 44.6 -54.6 -49.9 19.5 44.2 -3.8 31 37 A I H X S+ 0 0 0 -4,-1.7 4,-2.8 1,-0.2 -2,-0.2 0.912 111.3 53.5 -62.9 -42.3 16.3 42.4 -4.8 32 38 A S H X S+ 0 0 40 -4,-2.8 4,-2.2 1,-0.2 -1,-0.2 0.890 107.8 51.0 -61.0 -38.7 16.1 40.5 -1.5 33 39 A R H <>S+ 0 0 99 -4,-2.4 5,-2.2 2,-0.2 6,-1.6 0.854 110.4 48.6 -69.1 -36.0 16.4 43.8 0.4 34 40 A W H ><5S+ 0 0 13 -4,-1.9 3,-1.4 3,-0.2 -30,-0.2 0.934 110.6 52.6 -62.6 -43.9 13.5 45.3 -1.7 35 41 A C H 3<5S+ 0 0 8 -4,-2.8 -28,-0.3 1,-0.3 -2,-0.2 0.889 112.8 42.6 -62.2 -40.2 11.5 42.1 -1.0 36 42 A S T 3<5S- 0 0 59 -4,-2.2 -1,-0.3 -5,-0.2 -2,-0.2 0.430 112.2-121.5 -82.9 0.3 12.0 42.4 2.8 37 43 A N T < 5S+ 0 0 49 -3,-1.4 -3,-0.2 -4,-0.2 -2,-0.1 0.779 77.8 126.3 59.8 27.0 11.4 46.2 2.6 38 44 A K S - 0 0 55 1,-0.1 4,-2.3 -2,-0.1 5,-0.2 -0.389 38.2-101.5 -71.5 164.8 13.4 54.1 -7.4 43 49 A L H > S+ 0 0 134 1,-0.2 4,-1.9 2,-0.2 5,-0.1 0.883 123.7 51.0 -60.4 -38.6 10.1 54.7 -9.3 44 50 A D H > S+ 0 0 109 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.883 109.5 49.9 -66.8 -38.2 11.7 53.8 -12.7 45 51 A X H > S+ 0 0 58 2,-0.2 4,-2.6 1,-0.2 -2,-0.2 0.894 107.8 54.6 -64.8 -37.7 13.0 50.6 -11.3 46 52 A L H X S+ 0 0 11 -4,-2.3 4,-2.5 1,-0.2 -2,-0.2 0.908 106.0 52.4 -61.0 -41.5 9.6 49.8 -9.9 47 53 A V H X S+ 0 0 60 -4,-1.9 4,-2.3 2,-0.2 -1,-0.2 0.907 109.6 48.4 -59.5 -43.9 8.2 50.3 -13.4 48 54 A K H X S+ 0 0 81 -4,-1.8 4,-2.5 2,-0.2 -2,-0.2 0.920 110.7 50.7 -65.2 -41.8 10.7 47.8 -14.9 49 55 A V H X S+ 0 0 0 -4,-2.6 4,-2.0 1,-0.2 -2,-0.2 0.923 110.6 49.9 -58.5 -43.9 9.8 45.3 -12.2 50 56 A A H X>S+ 0 0 1 -4,-2.5 5,-2.3 2,-0.2 4,-0.7 0.910 109.4 50.9 -62.3 -42.2 6.1 45.7 -13.0 51 57 A E H ><5S+ 0 0 120 -4,-2.3 3,-0.9 1,-0.2 -1,-0.2 0.937 111.3 48.7 -60.0 -45.9 6.8 45.2 -16.7 52 58 A L H 3<5S+ 0 0 28 -4,-2.5 -1,-0.2 1,-0.2 -2,-0.2 0.819 115.9 42.6 -64.9 -33.7 8.8 42.0 -15.9 53 59 A L H 3<5S- 0 0 2 -4,-2.0 -1,-0.2 -5,-0.2 -2,-0.2 0.407 109.8-122.2 -92.6 -0.4 6.0 40.7 -13.7 54 60 A N T <<5S+ 0 0 131 -3,-0.9 2,-0.3 -4,-0.7 -3,-0.2 0.885 70.3 120.5 59.0 43.5 3.2 41.7 -16.1 55 61 A V S - 0 0 69 -2,-0.3 3,-2.0 1,-0.1 4,-0.3 -0.563 38.0-125.4 -63.5 133.1 0.5 47.6 -13.2 57 63 A P G > S+ 0 0 47 0, 0.0 3,-2.1 0, 0.0 4,-0.2 0.814 108.0 70.4 -57.3 -25.7 3.3 49.3 -11.2 58 64 A R G > S+ 0 0 148 1,-0.3 3,-1.4 2,-0.2 -11,-0.0 0.796 89.1 64.4 -56.2 -30.1 0.6 50.6 -8.8 59 65 A Q G < S+ 0 0 88 -3,-2.0 -1,-0.3 1,-0.3 -50,-0.1 0.648 93.9 60.5 -70.6 -13.7 0.3 46.9 -7.7 60 66 A L G < S+ 0 0 0 -3,-2.1 -55,-2.3 -4,-0.3 2,-0.4 0.410 92.3 82.2 -93.0 3.4 3.8 47.0 -6.4 61 67 A I B < A 4 0A 64 -3,-1.4 -57,-0.3 -57,-0.3 -59,-0.0 -0.901 360.0 360.0-114.6 137.5 3.2 49.8 -3.9 62 68 A N 0 0 122 -59,-2.8 -59,-2.9 -2,-0.4 -3,-0.0 -0.975 360.0 360.0-120.1 360.0 1.7 49.5 -0.4