==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEINASE INHIBITOR 14-MAY-90 1BUS . COMPND 2 MOLECULE: PROTEINASE INHIBITOR IIA; . SOURCE 2 ORGANISM_SCIENTIFIC: BOS TAURUS; . AUTHOR P.GUNTERT,M.P.WILLIAMSON,T.F.HAVEL,K.WUTHRICH . 57 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4452.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 31 54.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 8.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 10 17.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 15.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 216 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-161.1 2.2 -15.5 12.1 2 2 A G - 0 0 58 3,-0.0 2,-0.1 2,-0.0 0, 0.0 0.576 360.0-115.2 116.8 92.5 1.1 -14.4 8.6 3 3 A A - 0 0 95 1,-0.1 2,-0.5 2,-0.1 3,-0.0 -0.318 25.4-154.7 -53.7 120.6 2.0 -10.9 7.3 4 4 A Q + 0 0 178 1,-0.2 -1,-0.1 -2,-0.1 -2,-0.0 -0.366 52.2 124.3 -97.8 52.4 -1.4 -9.2 7.0 5 5 A V + 0 0 92 -2,-0.5 -1,-0.2 2,-0.0 2,-0.2 -0.210 33.3 138.8-102.3 40.4 -0.5 -6.7 4.3 6 6 A D - 0 0 104 1,-0.1 33,-0.1 2,-0.0 -2,-0.0 -0.521 28.3-178.8 -80.1 153.4 -3.3 -7.8 1.9 7 7 A a + 0 0 30 -2,-0.2 -1,-0.1 32,-0.1 9,-0.1 0.242 65.9 71.7-138.4 10.9 -5.2 -5.1 0.1 8 8 A A S > S+ 0 0 56 2,-0.1 3,-1.5 1,-0.1 4,-0.4 0.837 94.1 54.1 -91.4 -45.5 -7.8 -6.8 -2.0 9 9 A E T 3 S+ 0 0 148 1,-0.3 -1,-0.1 2,-0.1 -2,-0.0 0.495 111.7 46.0 -68.5 -6.0 -10.0 -7.9 0.9 10 10 A F T 3 S+ 0 0 68 25,-0.1 6,-0.6 6,-0.0 -1,-0.3 0.052 82.1 103.0-124.9 22.1 -10.3 -4.3 2.2 11 11 A K <>> + 0 0 60 -3,-1.5 4,-0.9 4,-0.1 5,-0.6 0.999 67.6 74.0 -65.0 -74.7 -10.9 -2.6 -1.1 12 12 A D T 45 + 0 0 137 -4,-0.4 -1,-0.0 1,-0.2 0, 0.0 -0.536 65.6 41.6 -94.9 163.2 -14.7 -1.9 -0.9 13 13 A P T 45S- 0 0 91 0, 0.0 -1,-0.2 0, 0.0 -2,-0.0 0.219 116.8 -60.7-105.2 123.0 -16.8 -0.5 0.2 14 14 A K T 45S+ 0 0 200 2,-0.1 -2,-0.2 1,-0.0 3,-0.1 0.967 98.5 124.2 49.5 64.2 -15.5 3.1 0.2 15 15 A V T <5 + 0 0 82 -4,-0.9 2,-1.1 1,-0.1 -3,-0.1 0.718 49.4 37.1-109.2 -86.9 -12.7 2.2 2.5 16 16 A Y S - 0 0 20 -14,-0.2 4,-2.3 1,-0.2 -1,-0.5 -0.577 69.1-122.9 -67.7 128.0 -2.9 5.6 1.5 35 35 A K H > S+ 0 0 46 -2,-0.3 4,-2.5 1,-0.3 5,-0.3 0.784 112.4 49.5 -40.7 -43.6 -4.0 2.0 1.4 36 36 A b H > S+ 0 0 13 -20,-0.6 4,-3.2 2,-0.2 5,-0.3 0.948 108.0 52.7 -66.0 -49.5 -5.5 2.7 -2.0 37 37 A A H > S+ 0 0 10 -3,-0.2 4,-2.7 1,-0.2 5,-0.2 0.914 114.2 42.8 -49.3 -54.8 -2.3 4.3 -3.3 38 38 A F H X S+ 0 0 18 -4,-2.3 4,-2.8 2,-0.2 5,-0.3 0.918 117.9 41.7 -60.6 -51.1 -0.2 1.4 -2.3 39 39 A a H X S+ 0 0 10 -4,-2.5 4,-2.4 1,-0.2 -2,-0.2 0.936 117.1 50.7 -61.2 -46.4 -2.5 -1.5 -3.4 40 40 A K H X S+ 0 0 140 -4,-3.2 4,-1.4 -5,-0.3 -2,-0.2 0.878 117.2 38.4 -56.4 -45.1 -3.2 0.4 -6.6 41 41 A A H < S+ 0 0 19 -4,-2.7 -2,-0.2 -5,-0.3 -3,-0.2 0.983 115.0 50.9 -71.3 -59.9 0.4 1.1 -7.4 42 42 A V H >X S+ 0 0 42 -4,-2.8 3,-1.3 1,-0.2 4,-0.5 0.788 106.3 58.8 -46.3 -36.6 1.8 -2.3 -6.3 43 43 A M H >< S+ 0 0 141 -4,-2.4 2,-1.0 1,-0.3 3,-0.6 0.991 117.4 30.2 -57.1 -64.4 -0.9 -3.9 -8.4 44 44 A K T 3< S+ 0 0 178 -4,-1.4 -1,-0.3 1,-0.2 -2,-0.2 -0.359 95.6 105.7 -90.5 51.7 0.4 -2.3 -11.6 45 45 A S T <4 S- 0 0 29 -3,-1.3 -1,-0.2 -2,-1.0 -2,-0.1 0.838 91.4-109.6 -95.0 -46.3 3.9 -2.2 -10.2 46 46 A G << - 0 0 73 -3,-0.6 -3,-0.1 -4,-0.5 -2,-0.1 -0.075 53.7 -80.7 140.0 -32.4 5.4 -5.0 -12.3 47 47 A G S S+ 0 0 72 -5,-0.2 3,-0.1 3,-0.0 -4,-0.1 0.669 115.1 80.9 109.7 28.8 5.9 -7.7 -9.8 48 48 A K + 0 0 121 -6,-0.1 2,-0.7 2,-0.1 -6,-0.0 0.095 57.5 103.0-147.5 21.9 9.2 -6.6 -8.2 49 49 A I + 0 0 30 -7,-0.2 -3,-0.1 -22,-0.1 -4,-0.1 -0.808 44.5 167.8-113.3 88.2 8.1 -3.9 -5.7 50 50 A N - 0 0 124 -2,-0.7 -23,-2.1 -24,-0.1 2,-0.4 -0.024 32.4 -97.7 -82.3-166.1 8.1 -5.4 -2.3 51 51 A L B +B 26 0B 42 -25,-0.2 -25,-0.2 -24,-0.1 -24,-0.1 -0.966 42.0 163.8-135.6 144.2 7.9 -3.4 0.9 52 52 A K + 0 0 124 -27,-1.3 -27,-0.3 -2,-0.4 -26,-0.1 -0.451 34.7 166.8-137.9 44.9 10.0 -1.8 3.6 53 53 A H + 0 0 20 -29,-0.2 2,-0.7 4,-0.1 -28,-0.6 0.398 29.7 113.2 -47.2 -11.0 6.9 0.3 4.4 54 54 A R S S- 0 0 177 -30,-0.2 -30,-0.1 -29,-0.2 2,-0.1 -0.624 96.7 -53.5 -77.4 115.3 8.1 1.6 7.7 55 55 A G S S+ 0 0 52 -2,-0.7 -30,-0.3 -32,-0.5 -3,-0.1 -0.385 124.9 12.6 58.6-130.6 8.6 5.4 7.5 56 56 A K 0 0 144 1,-0.1 -31,-0.4 -32,-0.1 -25,-0.0 -0.041 360.0 360.0 -64.4 175.2 10.9 5.9 4.5 57 57 A c 0 0 57 -33,-0.1 -31,-0.2 -4,-0.1 -30,-0.2 -0.143 360.0 360.0 -61.7 360.0 11.5 3.1 2.1