==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PEPTIDE HORMONE 29-SEP-98 1BWX . COMPND 2 MOLECULE: PARATHYROID HORMONE; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR U.C.MARX,P.ROESCH,K.ADERMANN,P.BAYER,W.-G.FORSSMANN . 39 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3567.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 59.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 46.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 176 0, 0.0 2,-0.5 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 144.1 22.7 7.3 -2.7 2 2 A V - 0 0 105 0, 0.0 3,-0.4 0, 0.0 2,-0.3 -0.964 360.0-165.6-122.1 120.1 19.4 5.7 -4.0 3 3 A S S S+ 0 0 77 -2,-0.5 0, 0.0 1,-0.2 0, 0.0 -0.810 72.4 9.8-104.6 145.0 17.5 3.1 -1.8 4 4 A E S > S+ 0 0 115 -2,-0.3 4,-2.0 3,-0.1 5,-0.2 0.862 74.8 155.3 59.1 37.2 14.7 0.8 -3.1 5 5 A I H > S+ 0 0 87 -3,-0.4 4,-1.6 1,-0.2 -2,-0.1 0.929 76.3 41.7 -61.9 -42.3 15.5 1.8 -6.8 6 6 A Q H > S+ 0 0 113 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.875 107.5 62.8 -72.8 -34.8 14.0 -1.6 -8.1 7 7 A L H > S+ 0 0 22 1,-0.2 4,-1.1 2,-0.2 3,-0.4 0.947 109.3 40.2 -54.2 -49.4 11.0 -1.3 -5.6 8 8 A M H < S+ 0 0 106 -4,-2.0 3,-0.3 1,-0.2 -1,-0.2 0.892 110.9 58.9 -67.7 -37.8 9.9 2.0 -7.4 9 9 A H H < S+ 0 0 107 -4,-1.6 -1,-0.2 -5,-0.2 -2,-0.2 0.802 103.0 53.9 -61.5 -28.3 10.8 0.4 -10.8 10 10 A N H >< S+ 0 0 18 -4,-1.8 3,-1.3 -3,-0.4 -1,-0.2 0.873 77.2 179.3 -74.4 -37.1 8.2 -2.4 -10.1 11 11 A L T 3< S+ 0 0 135 -4,-1.1 -3,-0.1 -3,-0.3 -2,-0.1 0.851 84.1 2.1 33.6 58.6 5.3 0.1 -9.3 12 12 A G T 3 S+ 0 0 37 -5,-0.3 -1,-0.3 0, 0.0 -2,-0.1 -0.078 121.2 75.9 129.8 -34.4 2.8 -2.8 -8.6 13 13 A K S < S+ 0 0 156 -3,-1.3 -2,-0.1 -6,-0.1 -6,-0.1 0.775 106.1 33.9 -78.0 -26.6 5.1 -5.9 -9.0 14 14 A H S S- 0 0 95 -7,-0.3 -1,-0.1 -8,-0.1 -7,-0.1 0.874 84.5-164.6 -95.0 -45.9 6.8 -5.4 -5.6 15 15 A L + 0 0 56 -8,-0.2 -8,-0.0 1,-0.0 3,-0.0 0.977 42.9 117.3 57.2 86.6 3.9 -3.9 -3.5 16 16 A N S S- 0 0 66 -9,-0.1 5,-0.1 0, 0.0 -1,-0.0 0.441 79.9 -6.0-142.2 -63.6 5.6 -2.4 -0.3 17 17 A S S > S+ 0 0 73 3,-0.1 4,-1.9 -10,-0.0 5,-0.2 0.693 139.3 3.5-108.0 -88.1 5.3 1.4 0.1 18 18 A M H > S+ 0 0 136 1,-0.2 4,-1.2 2,-0.2 5,-0.1 0.812 135.0 53.4 -72.2 -27.6 3.5 3.4 -2.7 19 19 A E H > S+ 0 0 8 2,-0.2 4,-1.6 3,-0.1 -1,-0.2 0.941 110.7 45.4 -71.7 -46.4 2.8 0.1 -4.6 20 20 A R H >> S+ 0 0 113 1,-0.2 4,-2.4 2,-0.2 3,-0.5 0.980 110.0 52.1 -61.6 -57.6 1.1 -1.6 -1.6 21 21 A V H 3X S+ 0 0 68 -4,-1.9 4,-2.7 1,-0.2 -1,-0.2 0.858 107.7 54.9 -48.0 -38.4 -1.1 1.4 -0.7 22 22 A E H 3X S+ 0 0 73 -4,-1.2 4,-1.9 2,-0.2 -1,-0.2 0.936 108.8 47.3 -63.1 -43.2 -2.3 1.5 -4.4 23 23 A W H X S+ 0 0 96 -4,-1.9 4,-2.1 1,-0.2 3,-0.5 0.916 107.2 60.0 -66.4 -40.4 -8.4 -0.7 -5.0 27 27 A K H 3X S+ 0 0 73 -4,-2.1 4,-3.0 1,-0.2 5,-0.3 0.865 97.7 59.3 -56.0 -36.2 -9.3 -3.2 -2.2 28 28 A L H 3X S+ 0 0 96 -4,-1.8 4,-2.2 1,-0.2 -1,-0.2 0.916 107.6 45.6 -60.4 -40.4 -11.5 -0.5 -0.6 29 29 A Q H X>S+ 0 0 80 -4,-3.0 3,-1.6 1,-0.2 4,-0.9 0.907 109.6 57.7 -60.6 -40.8 -15.0 -4.3 -0.3 32 32 A H H 3<5S+ 0 0 54 -4,-2.2 -1,-0.2 1,-0.3 -2,-0.2 0.928 116.7 33.8 -55.8 -46.2 -17.5 -1.4 -1.1 33 33 A N T 3<5S+ 0 0 116 -4,-2.1 -1,-0.3 1,-0.1 -2,-0.2 -0.240 105.0 82.0-103.5 44.3 -19.0 -3.6 -4.0 34 34 A F T <45S- 0 0 156 -3,-1.6 -2,-0.1 2,-0.3 -3,-0.1 0.785 116.6 -25.8-110.6 -59.1 -18.6 -7.0 -2.1 35 35 A V T <5S+ 0 0 138 -4,-0.9 2,-0.3 1,-0.4 -3,-0.1 0.626 129.7 11.7-127.0 -43.2 -21.5 -7.4 0.4 36 36 A A < - 0 0 69 -5,-0.5 2,-1.7 0, 0.0 -1,-0.4 -0.999 68.4-124.8-142.9 137.7 -22.8 -3.8 1.3 37 37 A L + 0 0 120 -2,-0.3 -5,-0.1 1,-0.2 -4,-0.1 -0.553 68.5 118.2 -83.7 81.0 -22.0 -0.4 -0.3 38 38 A G 0 0 69 -2,-1.7 -1,-0.2 -7,-0.2 -6,-0.1 0.800 360.0 360.0-107.3 -59.9 -20.8 1.5 2.9 39 39 A A 0 0 90 -3,-0.4 -7,-0.3 -11,-0.1 -6,-0.1 0.538 360.0 360.0-139.7 360.0 -17.1 2.5 2.1