==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 16-OCT-98 1BYV . COMPND 2 MOLECULE: PROTEIN (CALCITONIN); . SOURCE 2 ORGANISM_SCIENTIFIC: ANGUILLA JAPONICA; . AUTHOR Y.HASHIMOTO,K.TOMA,J.NISHIKIDO,K.YAMAMOTO,K.HANEDA,T.INAZU, . 32 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3246.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 40.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 34.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 113 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 162.5 3.6 -14.3 8.1 2 2 A S + 0 0 108 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.306 360.0 65.2-156.0 -34.5 6.3 -16.9 8.5 3 3 A N S S- 0 0 101 1,-0.0 0, 0.0 2,-0.0 0, 0.0 0.907 74.6-156.3 -64.4 -47.0 9.3 -15.8 6.3 4 4 A L S S+ 0 0 133 1,-0.1 -1,-0.0 0, 0.0 0, 0.0 0.869 86.8 46.1 61.5 43.2 10.1 -12.6 8.2 5 5 A S S > S+ 0 0 71 0, 0.0 4,-2.5 0, 0.0 5,-0.2 -0.020 114.2 38.7-167.4 -66.4 11.7 -11.2 5.1 6 6 A T H > S+ 0 0 93 2,-0.2 4,-2.3 1,-0.2 5,-0.2 0.798 116.5 60.2 -63.2 -30.1 9.3 -11.9 2.2 7 7 A a H > S+ 0 0 17 2,-0.2 4,-2.4 3,-0.2 -1,-0.2 0.963 108.8 40.3 -53.3 -58.5 6.7 -11.0 4.9 8 8 A V H > S+ 0 0 81 2,-0.2 4,-2.4 1,-0.2 5,-0.3 0.944 119.4 43.5 -61.6 -55.5 8.3 -7.5 5.3 9 9 A L H X S+ 0 0 110 -4,-2.5 4,-2.0 1,-0.2 -1,-0.2 0.902 117.3 46.2 -58.5 -48.1 8.9 -6.8 1.6 10 10 A G H X S+ 0 0 39 -4,-2.3 4,-2.5 -5,-0.2 -1,-0.2 0.886 112.8 50.7 -62.6 -43.1 5.5 -8.2 0.5 11 11 A K H X S+ 0 0 126 -4,-2.4 4,-2.3 -5,-0.2 -2,-0.2 0.946 114.1 41.0 -62.8 -54.5 3.6 -6.3 3.2 12 12 A L H X S+ 0 0 79 -4,-2.4 4,-2.3 2,-0.2 -1,-0.2 0.845 115.6 52.0 -66.6 -34.2 5.1 -2.8 2.5 13 13 A S H X S+ 0 0 45 -4,-2.0 4,-1.8 -5,-0.3 -2,-0.2 0.952 111.8 45.6 -64.3 -50.3 4.9 -3.3 -1.3 14 14 A Q H X S+ 0 0 140 -4,-2.5 4,-2.4 1,-0.2 -2,-0.2 0.873 112.5 52.4 -58.4 -42.3 1.2 -4.3 -1.0 15 15 A E H X S+ 0 0 111 -4,-2.3 4,-2.7 2,-0.2 5,-0.5 0.922 108.3 49.6 -60.5 -48.1 0.6 -1.3 1.4 16 16 A L H < S+ 0 0 109 -4,-2.3 4,-0.5 1,-0.2 -1,-0.2 0.828 113.4 47.3 -62.8 -33.6 2.2 1.1 -1.1 17 17 A H H < S+ 0 0 130 -4,-1.8 -2,-0.2 -5,-0.1 -1,-0.2 0.903 116.1 44.4 -70.1 -44.3 -0.0 -0.3 -3.9 18 18 A K H < S+ 0 0 170 -4,-2.4 -2,-0.2 -5,-0.1 -3,-0.2 0.972 128.4 23.9 -66.1 -60.4 -3.2 -0.1 -1.8 19 19 A L S >< S+ 0 0 56 -4,-2.7 3,-1.0 -5,-0.1 -3,-0.2 0.988 74.0 175.1 -71.6 -62.8 -2.8 3.4 -0.3 20 20 A Q T 3 S- 0 0 127 -5,-0.5 -4,-0.1 -4,-0.5 -3,-0.1 0.858 83.2 -55.2 56.2 42.3 -0.5 4.9 -2.9 21 21 A T T 3 S- 0 0 138 1,-0.1 -1,-0.3 2,-0.1 3,-0.2 0.778 95.9 -75.4 58.1 32.2 -0.6 8.3 -1.2 22 22 A Y < - 0 0 128 -3,-1.0 2,-2.0 1,-0.2 3,-0.3 0.949 49.0-155.4 51.1 78.3 -4.5 8.2 -1.4 23 23 A P + 0 0 92 0, 0.0 -1,-0.2 0, 0.0 3,-0.2 -0.494 38.1 148.1 -81.1 70.5 -5.3 8.9 -5.1 24 24 A R S S- 0 0 155 -2,-2.0 2,-0.3 1,-0.3 7,-0.1 0.973 73.6 -14.1 -68.9 -57.1 -8.8 10.2 -4.3 25 25 A T + 0 0 54 -3,-0.3 -1,-0.3 5,-0.1 2,-0.2 -0.979 59.2 179.5-148.4 141.6 -9.0 12.8 -7.1 26 26 A D + 0 0 161 -2,-0.3 0, 0.0 -3,-0.2 0, 0.0 -0.746 53.5 84.9-148.5 91.9 -6.2 14.2 -9.4 27 27 A V S S- 0 0 133 -2,-0.2 -1,-0.0 0, 0.0 -2,-0.0 0.330 106.8 -65.8-153.3 -42.7 -7.3 16.7 -12.0 28 28 A G S S+ 0 0 71 3,-0.0 -3,-0.0 0, 0.0 0, 0.0 -0.060 125.5 56.5 174.2 -54.6 -7.4 20.2 -10.3 29 29 A A S S- 0 0 85 2,-0.0 -4,-0.0 1,-0.0 -3,-0.0 0.942 78.6-155.9 -64.5 -52.4 -10.2 20.2 -7.7 30 30 A G - 0 0 46 1,-0.1 -5,-0.1 -6,-0.0 -6,-0.1 0.958 17.7-169.6 70.9 54.6 -8.8 17.3 -5.7 31 31 A T 0 0 78 1,-0.1 -1,-0.1 -7,-0.1 -3,-0.0 -0.428 360.0 360.0 -75.2 149.0 -12.1 16.3 -4.0 32 32 A P 0 0 146 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.887 360.0 360.0 -70.6 360.0 -12.2 13.7 -1.2