==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 28-OCT-98 1BZG . COMPND 2 MOLECULE: PARATHYROID HORMONE-RELATED PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.WEIDLER,U.C.MARX,G.SEIDEL,P.ROESCH . 34 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3666.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 64.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 14.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 17.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 32.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 149 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 58.5 -18.5 0.2 -8.1 2 2 A V - 0 0 100 1,-0.1 2,-0.1 2,-0.0 0, 0.0 0.003 360.0-131.8 -43.6 157.0 -17.7 -0.7 -4.5 3 3 A S - 0 0 71 1,-0.1 -1,-0.1 0, 0.0 0, 0.0 -0.400 14.6-109.1-105.2-173.7 -19.5 -3.9 -3.3 4 4 A E S > S+ 0 0 177 1,-0.1 4,-0.6 -2,-0.1 5,-0.3 0.963 114.3 44.9 -81.9 -68.7 -21.4 -4.6 -0.1 5 5 A H H > S+ 0 0 136 3,-0.1 4,-3.2 2,-0.1 -1,-0.1 0.824 96.1 100.2 -46.8 -28.3 -19.2 -6.9 1.9 6 6 A Q H 4 S+ 0 0 39 2,-0.2 2,-3.7 1,-0.2 4,-0.2 0.030 80.2 31.2 -48.9 172.5 -16.4 -4.5 0.9 7 7 A L H >4 S+ 0 0 138 2,-0.3 3,-1.5 1,-0.3 -1,-0.2 -0.346 125.7 48.1 69.2 -69.9 -15.6 -2.1 3.8 8 8 A L H 3< S+ 0 0 136 -2,-3.7 -1,-0.3 -4,-0.6 2,-0.3 0.900 115.4 47.5 -64.0 -32.8 -16.5 -4.9 6.1 9 9 A H T 3< S+ 0 0 97 -4,-3.2 -2,-0.3 -5,-0.3 -1,-0.3 -0.270 75.7 169.0 -98.7 45.2 -14.3 -6.9 3.8 10 10 A D X + 0 0 82 -3,-1.5 3,-3.1 -2,-0.3 2,-0.5 0.794 48.5 104.0 -25.8 -47.1 -11.5 -4.3 3.9 11 11 A K T 3 S+ 0 0 135 1,-0.3 -1,-0.1 -3,-0.2 3,-0.1 -0.142 82.0 39.4 -43.9 93.4 -9.3 -6.9 2.2 12 12 A G T 3 S+ 0 0 30 -2,-0.5 -1,-0.3 1,-0.1 3,-0.2 -0.035 88.3 102.0 151.1 -36.2 -9.5 -5.2 -1.2 13 13 A K S X> S- 0 0 83 -3,-3.1 2,-4.3 -4,-0.2 3,-1.3 0.293 106.0 -44.0 -57.1-161.9 -9.3 -1.5 -0.5 14 14 A S T 34 S+ 0 0 64 1,-0.2 -1,-0.2 2,-0.2 -3,-0.1 -0.154 121.4 90.3 -69.4 58.6 -6.0 0.3 -1.1 15 15 A I T 3> S+ 0 0 63 -2,-4.3 4,-1.9 2,-0.2 -1,-0.2 0.654 88.3 43.9-114.6 -47.5 -4.2 -2.6 0.5 16 16 A Q H <> S+ 0 0 101 -3,-1.3 4,-0.8 1,-0.2 -2,-0.2 0.859 125.8 39.1 -63.4 -29.9 -3.8 -4.6 -2.7 17 17 A D H X S+ 0 0 60 -4,-0.8 4,-1.8 2,-0.2 3,-0.3 0.891 104.6 62.0 -87.6 -43.2 -2.8 -1.1 -3.8 18 18 A L H > S+ 0 0 61 1,-0.3 4,-1.1 2,-0.2 -2,-0.2 0.881 104.0 57.3 -49.6 -27.5 -0.9 -0.0 -0.7 19 19 A R H >X S+ 0 0 115 -4,-1.9 4,-3.0 1,-0.2 3,-1.0 0.952 101.1 50.5 -66.8 -49.2 1.1 -3.0 -1.9 20 20 A R H 3X S+ 0 0 144 -4,-0.8 4,-0.5 -3,-0.3 -1,-0.2 0.714 102.7 62.9 -65.7 -11.9 1.7 -1.3 -5.3 21 21 A R H 3< S+ 0 0 140 -4,-1.8 4,-0.4 1,-0.2 -1,-0.3 0.868 115.2 31.0 -77.5 -31.6 2.8 1.7 -3.2 22 22 A F H < S+ 0 0 114 -4,-4.7 3,-0.9 -7,-0.2 -2,-0.2 0.960 119.6 38.2 -79.2 -55.8 9.7 -3.7 -2.1 27 27 A L H 3< S+ 0 0 133 -4,-2.0 -2,-0.2 -5,-0.4 -1,-0.2 0.603 134.7 29.3 -72.3 -6.7 11.6 -5.0 -5.2 28 28 A I T 3< S+ 0 0 128 -4,-1.9 -1,-0.3 -6,-0.3 -2,-0.2 -0.280 120.3 42.8-147.9 57.2 13.8 -1.9 -4.8 29 29 A A < + 0 0 38 -3,-0.9 -1,-0.2 1,-0.2 2,-0.1 -0.141 69.1 100.9 162.3 93.7 14.0 -0.8 -1.2 30 30 A E + 0 0 101 -3,-0.1 2,-0.5 -2,-0.0 -1,-0.2 -0.423 27.9 176.6 172.6 106.2 14.4 -3.1 1.8 31 31 A I > - 0 0 131 -2,-0.1 2,-1.7 0, 0.0 3,-0.7 -0.920 31.2-133.2-124.8 109.0 17.5 -3.9 3.9 32 32 A H T 3 S- 0 0 161 -2,-0.5 -2,-0.0 1,-0.3 0, 0.0 -0.343 81.1 -50.3 -59.5 89.2 17.1 -6.2 6.9 33 33 A T T 3 0 0 144 -2,-1.7 -1,-0.3 0, 0.0 0, 0.0 0.934 360.0 360.0 43.0 55.7 19.1 -4.1 9.3 34 34 A A < 0 0 135 -3,-0.7 0, 0.0 0, 0.0 0, 0.0 -0.259 360.0 360.0 58.7 360.0 21.9 -3.9 6.8