==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSPORT PROTEIN 01-NOV-98 1BZK . COMPND 2 MOLECULE: PROTEIN (BAND 3 ANION TRANSPORT PROTEIN); . SOURCE 2 SYNTHETIC: YES; . AUTHOR E.J.CHAMBERS,G.B.BLOOMBERG,S.M.RING,M.J.A.TANNER . 42 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4631.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 52.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 11.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 35.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A R 0 0 256 0, 0.0 4,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-102.1 26.5 12.5 4.8 2 3 A Y + 0 0 157 3,-0.0 4,-0.2 2,-0.0 0, 0.0 -0.515 360.0 143.4-161.6 86.3 25.9 9.7 2.3 3 4 A P S >> S+ 0 0 82 0, 0.0 4,-0.8 0, 0.0 3,-0.6 0.918 86.2 17.1 -87.7 -78.7 29.0 7.6 1.2 4 5 A Y T 34 S+ 0 0 183 1,-0.2 3,-0.3 2,-0.2 4,-0.2 0.836 113.8 76.8 -69.8 -28.9 27.9 4.0 0.8 5 6 A Y T >> S+ 0 0 159 1,-0.3 3,-1.2 2,-0.2 4,-0.7 0.899 95.2 49.3 -48.3 -41.2 24.3 5.1 0.7 6 7 A L H <> S+ 0 0 111 -3,-0.6 4,-0.9 1,-0.3 -1,-0.3 0.906 109.9 49.8 -67.6 -39.0 24.8 6.2 -2.9 7 8 A S H 3< S+ 0 0 59 -4,-0.8 -1,-0.3 -3,-0.3 -2,-0.2 0.235 95.3 81.8 -84.0 18.2 26.5 2.9 -3.8 8 9 A D H X4 S+ 0 0 107 -3,-1.2 3,-0.8 -4,-0.2 -1,-0.2 0.943 103.2 22.3 -86.5 -58.6 23.5 1.0 -2.3 9 10 A I H >< S+ 0 0 158 -4,-0.7 3,-0.6 1,-0.2 -2,-0.1 0.810 121.6 60.0 -79.1 -28.3 20.9 1.2 -5.1 10 11 A T T 3< S+ 0 0 60 -4,-0.9 3,-0.3 1,-0.2 -1,-0.2 0.138 75.6 99.8 -85.3 24.2 23.5 1.7 -7.8 11 12 A D T < S+ 0 0 81 -3,-0.8 -1,-0.2 1,-0.2 -2,-0.1 0.350 72.6 62.8 -90.6 8.8 25.1 -1.7 -6.8 12 13 A A S < S+ 0 0 87 -3,-0.6 -1,-0.2 1,-0.1 -2,-0.1 0.627 84.3 71.5-105.1 -17.6 23.4 -3.4 -9.7 13 14 A F S S+ 0 0 169 -3,-0.3 -1,-0.1 1,-0.2 -2,-0.1 0.481 101.7 50.0 -77.0 1.7 25.1 -1.4 -12.6 14 15 A S + 0 0 16 -3,-0.1 -1,-0.2 1,-0.1 -4,-0.0 -0.724 57.8 142.6-146.4 94.5 28.3 -3.3 -11.7 15 16 A P S > S+ 0 0 95 0, 0.0 4,-1.4 0, 0.0 3,-0.4 0.890 81.4 32.6 -92.9 -69.3 28.2 -7.1 -11.4 16 17 A Q H > S+ 0 0 171 1,-0.3 4,-1.7 2,-0.2 3,-0.3 0.970 122.2 49.9 -58.2 -50.9 31.5 -8.4 -12.9 17 18 A V H > S+ 0 0 86 1,-0.2 4,-2.7 2,-0.2 -1,-0.3 0.786 100.7 69.7 -59.3 -22.4 33.3 -5.3 -11.8 18 19 A L H > S+ 0 0 56 -3,-0.4 4,-1.6 2,-0.2 -1,-0.2 0.991 100.4 42.7 -60.2 -57.5 31.7 -6.1 -8.4 19 20 A A H >X S+ 0 0 64 -4,-1.4 4,-2.1 -3,-0.3 3,-0.7 0.955 113.4 53.8 -52.7 -51.1 33.8 -9.2 -7.8 20 21 A A H 3X S+ 0 0 51 -4,-1.7 4,-1.9 1,-0.3 3,-0.5 0.953 104.1 54.2 -48.9 -55.4 36.9 -7.4 -9.1 21 22 A V H 3X S+ 0 0 80 -4,-2.7 4,-1.9 1,-0.3 -1,-0.3 0.859 107.6 52.5 -50.4 -34.5 36.4 -4.5 -6.6 22 23 A I H S+ 0 0 103 -4,-1.9 5,-1.9 2,-0.2 4,-1.4 0.873 108.0 59.8 -73.7 -33.0 41.2 -5.2 -4.5 25 26 A Y H <5S+ 0 0 108 -4,-1.9 -1,-0.2 -5,-0.3 -2,-0.2 0.798 111.1 43.1 -63.8 -22.4 39.2 -5.0 -1.2 26 27 A F H <5S+ 0 0 164 -4,-1.7 -1,-0.2 -3,-0.2 -2,-0.2 0.772 123.9 36.3 -90.1 -31.8 41.2 -8.1 -0.4 27 28 A A H <5S+ 0 0 72 -4,-1.6 3,-0.5 -5,-0.2 -3,-0.2 0.949 136.4 8.8 -85.6 -72.1 44.5 -6.8 -1.7 28 29 A A T <5S+ 0 0 67 -4,-1.4 4,-0.5 1,-0.2 -3,-0.2 0.945 132.2 47.6 -78.8 -51.6 44.7 -3.0 -1.0 29 30 A L S > S+ 0 0 72 0, 0.0 4,-1.4 0, 0.0 3,-0.4 0.595 108.0 79.1 -90.9 -21.5 44.0 -3.4 6.3 32 33 A A T 4 S+ 0 0 40 -4,-0.5 -2,-0.1 1,-0.2 -3,-0.1 0.832 75.7 80.1 -61.8 -28.4 41.9 -0.3 5.5 33 34 A I T < S+ 0 0 94 -4,-0.7 -1,-0.2 1,-0.2 -3,-0.1 0.940 105.5 26.5 -43.0 -63.9 38.9 -2.1 7.1 34 35 A T T 4 S+ 0 0 120 -3,-0.4 2,-0.5 -4,-0.2 -1,-0.2 0.811 107.8 87.0 -74.3 -28.1 39.9 -1.3 10.7 35 36 A F S < S+ 0 0 177 -4,-1.4 0, 0.0 2,-0.1 0, 0.0 -0.593 93.9 12.3 -75.8 123.0 41.8 1.9 9.7 36 37 A G S S+ 0 0 66 -2,-0.5 3,-0.1 2,-0.1 0, 0.0 0.481 77.8 109.6 85.4 128.6 39.4 4.9 9.6 37 38 A G + 0 0 64 1,-0.1 2,-1.5 0, 0.0 -2,-0.1 -0.208 55.0 75.3 170.1 -67.8 35.9 4.8 11.0 38 39 A L + 0 0 158 1,-0.2 3,-0.3 2,-0.0 -1,-0.1 -0.536 46.4 153.6 -73.6 94.3 35.3 6.8 14.2 39 40 A L + 0 0 165 -2,-1.5 -1,-0.2 1,-0.2 3,-0.1 0.261 66.7 51.2-105.2 12.1 35.2 10.3 12.7 40 41 A G + 0 0 50 1,-0.1 -1,-0.2 -3,-0.1 -2,-0.0 -0.419 52.4 166.2-146.0 67.1 33.0 11.7 15.5 41 42 A E 0 0 163 -3,-0.3 -1,-0.1 1,-0.0 -2,-0.0 0.812 360.0 360.0 -53.7 -25.6 34.4 10.9 19.0 42 43 A K 0 0 259 -3,-0.1 -2,-0.1 0, 0.0 -1,-0.0 0.945 360.0 360.0 46.5 360.0 31.9 13.6 20.2