==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-JUN-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PEPTIDE NUCLEIC ACID 23-JAN-08 3C1P . COMPND 2 MOLECULE: PEPTIDE NUCLEIC ACID DLY-HGL-AGD-LHC-AGD-LHC-CUD- . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.A.CUESTA-SEIJO,G.M.SHELDRICK,J.ZHANG,U.DIEDERICHSEN . 28 4 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4077.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 8 28.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 28.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 11 A X > 0 0 211 0, 0.0 3,-2.3 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0 6.7 -5.6 -20.1 13.0 2 12 A X T 3 + 0 0 157 1,-0.3 0, 0.0 0, 0.0 0, 0.0 -0.403 360.0 28.4 -57.0 128.5 -5.7 -18.6 9.5 3 13 A X T > S+ 0 0 81 1,-0.3 3,-2.5 -2,-0.1 -1,-0.3 0.116 80.4 150.1 106.2 -16.3 -9.4 -18.2 8.6 4 14 A X T < S+ 0 0 118 -3,-2.3 -1,-0.3 1,-0.3 3,-0.1 -0.245 72.7 8.9 -54.2 128.1 -10.7 -17.8 12.1 5 15 A X T 3 S+ 0 0 144 1,-0.3 -1,-0.3 2,-0.0 2,-0.1 0.319 87.0 149.6 90.8 -9.6 -13.8 -15.6 12.1 6 16 A X < 0 0 100 -3,-2.5 -1,-0.3 1,-0.2 0, 0.0 -0.417 360.0 360.0 -67.6 137.9 -14.3 -15.5 8.4 7 17 A X 0 0 215 -2,-0.1 -1,-0.2 -3,-0.1 -3,-0.0 0.017 360.0 360.0 107.1 360.0 -17.9 -15.2 7.4 8 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 9 21 B X > 0 0 154 0, 0.0 3,-2.2 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0-151.2 -10.3 -6.1 -0.7 10 22 B X T 3 + 0 0 181 1,-0.3 3,-0.1 3,-0.1 0, 0.0 -0.252 360.0 5.5 -56.0 117.6 -9.5 -9.8 -0.0 11 23 B X T > S+ 0 0 93 1,-0.3 3,-2.1 -2,-0.1 -1,-0.3 0.058 90.9 135.3 103.6 -27.8 -5.7 -10.2 0.3 12 24 B X T < S+ 0 0 120 -3,-2.2 -1,-0.3 1,-0.3 3,-0.1 -0.404 77.2 11.9 -62.7 125.6 -4.9 -6.5 0.1 13 25 B X T 3 S+ 0 0 195 1,-0.3 -1,-0.3 -2,-0.1 2,-0.2 0.372 89.0 144.9 92.7 -0.5 -2.4 -5.6 2.8 14 26 B X < 0 0 93 -3,-2.1 -1,-0.3 0, 0.0 -4,-0.0 -0.494 360.0 360.0 -72.2 134.9 -1.5 -9.2 3.7 15 27 B X 0 0 212 -2,-0.2 -4,-0.0 -3,-0.1 -3,-0.0 -0.793 360.0 360.0 109.1 360.0 2.1 -9.8 4.7 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 31 C X > 0 0 157 0, 0.0 3,-2.0 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0-147.7 -13.3 -8.5 18.2 18 32 C X T 3 + 0 0 181 1,-0.3 3,-0.1 3,-0.1 0, 0.0 -0.282 360.0 6.0 -64.9 123.4 -12.4 -4.9 17.7 19 33 C X T > S+ 0 0 96 1,-0.3 3,-1.7 -2,-0.1 -1,-0.3 0.017 92.6 133.5 100.1 -26.2 -8.7 -4.3 18.4 20 34 C X T < S+ 0 0 117 -3,-2.0 -1,-0.3 1,-0.3 0, 0.0 -0.358 73.4 13.3 -64.6 132.1 -7.9 -8.0 18.9 21 35 C X T 3 S+ 0 0 192 1,-0.3 -1,-0.3 -2,-0.1 -3,-0.1 0.438 80.0 163.7 86.2 2.9 -4.8 -9.1 17.0 22 36 C X < 0 0 103 -3,-1.7 -1,-0.3 1,-0.3 -2,-0.0 -0.308 360.0 360.0 -55.4 128.2 -3.6 -5.6 16.2 23 37 C X 0 0 217 -2,-0.0 -1,-0.3 0, 0.0 -2,-0.1 0.353 360.0 360.0 110.6 360.0 0.1 -6.0 15.2 24 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 25 41 D X > 0 0 100 0, 0.0 3,-2.6 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -85.3 -4.9 4.7 6.3 26 42 D X T 3 + 0 0 179 1,-0.3 3,-0.1 3,-0.1 0, 0.0 -0.325 360.0 31.9 -54.4 132.3 -5.9 3.1 9.7 27 43 D X T > S+ 0 0 91 1,-0.3 3,-2.2 2,-0.0 -1,-0.3 0.079 84.8 144.7 104.1 -22.6 -9.8 3.2 9.7 28 44 D X T < S+ 0 0 112 -3,-2.6 -1,-0.3 1,-0.3 3,-0.1 -0.236 70.4 11.9 -56.2 130.5 -10.0 2.8 5.9 29 45 D X T 3 S+ 0 0 145 1,-0.3 -1,-0.3 -3,-0.1 2,-0.1 0.326 86.3 148.5 93.1 -13.3 -13.0 0.7 4.9 30 46 D X < 0 0 102 -3,-2.2 -1,-0.3 1,-0.2 0, 0.0 -0.361 360.0 360.0 -60.5 132.0 -14.6 0.8 8.3 31 47 D X 0 0 211 -3,-0.1 -1,-0.2 -2,-0.1 -3,-0.0 0.115 360.0 360.0 101.9 360.0 -18.4 0.6 8.0