==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 27-JUL-99 1C2U . COMPND 2 MOLECULE: SYNTHETIC PEPTIDE ANALOGUE OF SHK TOXIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.W.PENNINGTON,M.D.LANIGAN,K.KALMAN,V.M.MANHIR,H.RAUER, . 35 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2718.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 37.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 230 0, 0.0 2,-0.2 0, 0.0 12,-0.0 0.000 360.0 360.0 360.0 53.6 -5.0 11.8 5.9 2 2 A S - 0 0 78 1,-0.3 9,-0.3 10,-0.0 7,-0.1 -0.719 360.0 -60.3-127.6 176.0 -1.3 12.5 5.6 3 3 A X - 0 0 41 7,-2.7 -1,-0.3 -2,-0.2 10,-0.2 0.111 36.9-152.4 -52.0 170.7 1.9 10.5 4.6 4 4 A I - 0 0 48 8,-0.7 2,-0.1 1,-0.2 9,-0.1 0.770 49.8 -62.3-111.2 -69.9 3.1 7.4 6.6 5 5 A D S S+ 0 0 114 0, 0.0 -1,-0.2 0, 0.0 4,-0.2 -0.270 109.4 18.3-146.3-126.0 6.8 6.9 6.4 6 6 A T S S+ 0 0 105 -2,-0.1 3,-0.2 2,-0.1 21,-0.0 0.569 100.7 103.6 -33.4 -24.8 9.4 6.2 3.6 7 7 A I S S- 0 0 10 1,-0.2 2,-2.4 5,-0.1 -4,-0.0 -0.043 99.4 -61.4 -59.4 163.2 6.8 7.4 1.0 8 8 A P - 0 0 52 0, 0.0 4,-0.3 0, 0.0 3,-0.3 -0.263 67.3-118.3 -40.3 66.5 6.8 10.8 -0.8 9 9 A K S S+ 0 0 176 -2,-2.4 -3,-0.1 -4,-0.2 2,-0.0 0.239 89.3 74.9 -18.8 66.0 6.5 12.8 2.4 10 10 A S S S- 0 0 46 -2,-0.3 -7,-2.7 2,-0.2 -1,-0.2 0.039 108.8 -39.7-144.1-101.7 3.1 14.4 1.6 11 11 A R S S+ 0 0 183 -9,-0.3 2,-0.4 -3,-0.3 6,-0.1 0.088 89.9 113.6-132.4 24.5 -0.3 12.7 1.7 12 12 A a + 0 0 1 -4,-0.3 -8,-0.7 4,-0.1 2,-0.3 -0.817 33.6 157.0-102.2 138.0 0.2 9.2 0.2 13 13 A T >>> - 0 0 0 -2,-0.4 3,-2.5 -10,-0.2 4,-1.8 -0.985 55.3-118.4-153.6 151.3 -0.3 6.2 2.5 14 14 A A T 345S+ 0 0 2 -2,-0.3 8,-0.2 1,-0.3 7,-0.1 0.667 116.5 70.4 -66.5 -11.0 -1.1 2.5 2.0 15 15 A F T 345S- 0 0 106 3,-0.1 -1,-0.3 2,-0.1 4,-0.1 0.384 128.8 -4.6 -81.9 2.0 -4.1 3.5 4.1 16 16 A Q T X45S+ 0 0 60 -3,-2.5 3,-0.8 3,-0.1 -2,-0.2 0.214 120.1 71.9-151.5 -67.0 -5.2 5.4 0.9 17 17 A b T 3<5S- 0 0 6 -4,-1.8 -3,-0.2 1,-0.3 15,-0.1 0.751 132.1 -19.2 -29.6 -44.6 -2.7 5.3 -2.0 18 18 A K T 3 < - 0 0 80 -5,-0.7 4,-0.5 9,-0.3 -1,-0.3 -0.220 68.2-170.3-172.2 71.2 -3.5 1.7 -2.5 19 19 A H S X S+ 0 0 114 -3,-0.8 2,-2.5 1,-0.2 3,-1.9 0.865 85.2 42.1 -29.6 -84.4 -5.2 -0.1 0.4 20 20 A S T 3 S+ 0 0 90 1,-0.3 -1,-0.2 2,-0.1 -5,-0.0 -0.439 112.8 54.9 -75.8 78.3 -5.1 -3.8 -0.8 21 21 A A T >> + 0 0 0 -2,-2.5 3,-3.2 -3,-0.2 4,-2.5 0.227 63.4 107.4 179.7 -12.5 -1.5 -3.6 -2.2 22 22 A K T <4 S+ 0 0 112 -3,-1.9 -2,-0.1 -4,-0.5 6,-0.1 0.767 87.8 50.8 -54.3 -20.1 0.6 -2.3 0.7 23 23 A Y T 34 S+ 0 0 161 1,-0.1 -1,-0.3 4,-0.1 -3,-0.1 0.327 112.1 49.3 -97.0 5.1 2.0 -5.9 0.8 24 24 A R T <4 S+ 0 0 150 -3,-3.2 -2,-0.2 3,-0.0 -1,-0.1 0.735 130.0 14.0-109.5 -48.0 2.6 -5.7 -2.9 25 25 A L S < S- 0 0 24 -4,-2.5 -3,-0.2 10,-0.1 -2,-0.1 0.835 105.6-110.7 -90.8 -79.1 4.5 -2.4 -3.2 26 26 A S S S- 0 0 73 -5,-0.2 3,-0.1 9,-0.0 -4,-0.1 -0.051 75.3 -38.8 178.7 -43.8 5.3 -1.8 0.5 27 27 A F S S+ 0 0 78 1,-0.6 2,-0.3 -6,-0.1 -9,-0.3 0.178 118.4 33.2-159.8 -64.5 3.2 1.1 1.5 28 28 A a + 0 0 4 -16,-0.1 -1,-0.6 -11,-0.1 -14,-0.1 -0.767 60.7 113.6-111.5 155.8 2.8 3.9 -1.1 29 29 A R >> + 0 0 82 -2,-0.3 4,-2.6 5,-0.1 3,-1.9 -0.276 64.1 51.2-176.5 -89.6 2.7 3.8 -4.9 30 30 A K T 34 S+ 0 0 142 1,-0.3 -12,-0.1 2,-0.2 -2,-0.1 0.812 131.3 24.9 -39.9 -42.5 -0.3 4.6 -7.3 31 31 A T T 34 S+ 0 0 91 1,-0.1 -1,-0.3 -18,-0.1 -20,-0.2 0.262 126.7 54.6-105.2 1.3 -0.8 8.0 -5.5 32 32 A b T <4 S- 0 0 10 -3,-1.9 -2,-0.2 -15,-0.1 -1,-0.1 0.471 83.8-151.7-113.2 -11.9 2.7 8.0 -4.4 33 33 A G S < S+ 0 0 79 -4,-2.6 -3,-0.1 1,-0.1 -4,-0.0 0.672 71.0 103.6 41.5 21.4 4.6 7.6 -7.8 34 34 A T 0 0 73 -5,-0.4 -5,-0.1 -26,-0.0 -1,-0.1 0.826 360.0 360.0 -99.0 -37.8 7.3 5.9 -5.7 35 35 A X 0 0 97 -7,-0.1 -10,-0.1 -8,-0.0 -3,-0.1 -0.499 360.0 360.0-121.3 360.0 7.0 2.1 -6.2