==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 17-AUG-99 1C49 . COMPND 2 MOLECULE: TOXIN K-BETA; . SOURCE 2 ORGANISM_SCIENTIFIC: PANDINUS IMPERATOR; . AUTHOR K.C.KLENK,T.C.TENENHOLZ,D.R.MATTESON,R.S.ROGOWSKI, . 35 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3039.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 48.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 14.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 4 A T 0 0 139 0, 0.0 28,-0.1 0, 0.0 26,-0.0 0.000 360.0 360.0 360.0-143.0 6.5 -3.1 -6.7 2 5 A I - 0 0 50 28,-0.1 2,-0.4 1,-0.1 0, 0.0 0.269 360.0-108.2 -55.9-163.7 6.6 0.6 -5.5 3 6 A S + 0 0 100 6,-0.1 2,-0.2 26,-0.1 26,-0.2 -0.788 57.6 132.8-137.5 94.8 9.1 1.6 -2.9 4 7 A a - 0 0 5 -2,-0.4 24,-0.3 1,-0.1 3,-0.1 -0.754 34.5-162.9-131.7-179.9 7.6 2.5 0.6 5 8 A T S S+ 0 0 115 1,-0.3 22,-0.1 -2,-0.2 23,-0.1 0.563 70.9 50.9-131.5 -59.4 8.4 1.6 4.2 6 9 A N S > S- 0 0 105 1,-0.1 3,-1.2 18,-0.1 4,-0.3 -0.446 81.5-119.9 -82.8 160.3 5.5 2.4 6.6 7 10 A E G > S+ 0 0 45 1,-0.3 3,-1.4 2,-0.2 16,-0.1 0.825 110.7 68.8 -70.1 -28.2 1.9 1.1 5.8 8 11 A K G > S+ 0 0 131 1,-0.3 3,-1.2 2,-0.2 -1,-0.3 0.689 84.8 74.4 -64.5 -13.0 0.6 4.6 5.7 9 12 A Q G < S+ 0 0 104 -3,-1.2 4,-0.3 1,-0.3 -1,-0.3 0.846 94.8 47.8 -69.8 -31.1 2.7 5.0 2.5 10 13 A C G <> S+ 0 0 0 -3,-1.4 4,-1.8 -4,-0.3 5,-0.4 0.248 84.3 98.6 -93.2 16.1 0.1 2.9 0.5 11 14 A Y H <> S+ 0 0 74 -3,-1.2 4,-1.3 1,-0.2 -1,-0.2 0.977 95.1 29.2 -65.4 -52.4 -2.8 4.9 1.9 12 15 A P H > S+ 0 0 83 0, 0.0 4,-1.6 0, 0.0 -1,-0.2 0.663 115.7 66.3 -79.6 -19.3 -3.1 7.1 -1.2 13 16 A H H > S+ 0 0 56 -4,-0.3 4,-1.2 2,-0.2 -2,-0.2 0.990 113.3 26.6 -67.6 -59.4 -1.7 4.3 -3.4 14 17 A b H X>S+ 0 0 0 -4,-1.8 5,-2.3 2,-0.2 4,-1.9 0.862 117.1 63.3 -73.5 -33.6 -4.7 1.9 -3.0 15 18 A K H <5S+ 0 0 129 -4,-1.3 -1,-0.2 -5,-0.4 -2,-0.2 0.944 112.7 34.7 -57.0 -46.5 -7.1 4.7 -2.3 16 19 A K H <5S+ 0 0 182 -4,-1.6 -1,-0.2 3,-0.1 -2,-0.2 0.740 121.6 50.5 -80.9 -21.7 -6.6 6.1 -5.8 17 20 A E H <5S- 0 0 114 -4,-1.2 -2,-0.2 3,-0.2 -3,-0.2 0.974 136.5 -1.7 -80.1 -66.7 -6.1 2.7 -7.4 18 21 A T T <5S- 0 0 70 -4,-1.9 -3,-0.2 2,-0.3 -2,-0.1 0.786 100.6-107.9 -95.1 -32.1 -9.2 0.7 -6.1 19 22 A G S +A 29 0A 124 3,-1.7 3,-1.0 -2,-0.5 -20,-0.1 -0.984 69.6 0.2-129.6 130.9 5.9 -4.6 3.3 27 30 A N T 3 S- 0 0 149 -2,-0.4 -1,-0.2 1,-0.3 3,-0.1 0.915 128.9 -60.2 63.5 39.8 9.2 -5.2 1.6 28 31 A R T 3 S+ 0 0 188 -24,-0.3 2,-0.3 1,-0.2 -1,-0.3 0.742 116.7 116.4 61.3 19.0 8.9 -1.8 -0.2 29 32 A K E < -A 26 0A 75 -3,-1.0 -3,-1.7 -26,-0.2 2,-0.4 -0.879 56.5-142.4-119.1 152.3 5.7 -3.2 -1.8 30 33 A C E -A 25 0A 11 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -0.874 13.1-166.0-113.4 146.6 2.1 -1.9 -1.3 31 34 A K E -A 24 0A 118 -7,-1.7 -7,-1.3 -2,-0.4 2,-0.6 -0.933 13.9-137.3-128.9 153.5 -1.1 -4.0 -1.1 32 35 A b E > -A 23 0A 31 -2,-0.3 3,-0.5 -9,-0.2 -9,-0.2 -0.927 12.4-174.4-114.7 119.5 -4.8 -3.1 -1.4 33 36 A F T 3 S+ 0 0 140 -11,-2.1 -10,-0.1 -2,-0.6 -1,-0.1 0.353 80.9 69.9 -90.2 8.2 -7.3 -4.7 1.1 34 37 A G T 3 0 0 10 -12,-0.4 -1,-0.2 -14,-0.2 -14,-0.1 -0.072 360.0 360.0-114.1 34.5 -10.2 -3.0 -0.8 35 38 A R < 0 0 252 -3,-0.5 -2,-0.0 -16,-0.1 -17,-0.0 0.013 360.0 360.0 -57.2 360.0 -10.0 -5.2 -4.0