==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 27-JUL-99 1C4E . COMPND 2 MOLECULE: PROTEIN (GURMARIN); . SOURCE 2 ORGANISM_SCIENTIFIC: GYMNEMA SYLVESTRE; . AUTHOR J.I.FLETCHER,A.J.DINGLEY,G.F.KING . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3095.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 42.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 17.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 172 0, 0.0 15,-0.0 0, 0.0 14,-0.0 0.000 360.0 360.0 360.0 162.5 -12.8 -8.1 -3.7 2 2 A Q - 0 0 168 1,-0.1 14,-0.5 13,-0.0 0, 0.0 -0.006 360.0-102.6 -60.6 171.9 -13.3 -4.3 -3.9 3 3 A a - 0 0 48 12,-0.1 2,-0.3 16,-0.0 14,-0.2 0.138 29.5-117.6 -79.4-159.9 -10.8 -2.0 -5.6 4 4 A V - 0 0 12 11,-0.1 14,-1.9 17,-0.0 15,-0.2 -0.955 16.2-129.4-151.1 126.4 -8.2 0.2 -4.2 5 5 A K > - 0 0 142 -2,-0.3 3,-2.0 12,-0.2 28,-0.3 -0.487 39.6 -93.6 -76.5 144.2 -7.8 4.0 -4.3 6 6 A K T 3 S+ 0 0 146 1,-0.3 28,-0.1 -2,-0.2 -1,-0.1 -0.264 113.1 29.0 -56.9 138.4 -4.5 5.5 -5.4 7 7 A D T 3 S+ 0 0 107 26,-1.0 2,-0.3 1,-0.4 -1,-0.3 0.205 96.9 115.6 93.8 -14.2 -2.3 6.4 -2.5 8 8 A E < - 0 0 99 -3,-2.0 25,-1.0 1,-0.1 -1,-0.4 -0.636 68.7-111.9 -89.6 146.0 -3.8 3.5 -0.5 9 9 A L B +A 32 0A 95 23,-0.3 23,-0.4 -2,-0.3 2,-0.3 0.106 41.0 162.3 -63.3-176.5 -1.7 0.6 0.6 10 10 A b - 0 0 14 21,-1.6 21,-0.2 13,-0.1 6,-0.1 -0.965 33.0-103.8 178.7-173.8 -2.1 -3.0 -0.7 11 11 A I >> - 0 0 82 -2,-0.3 3,-1.5 4,-0.1 4,-1.1 -0.962 26.1-123.0-143.1 123.4 -0.5 -6.4 -1.0 12 12 A P T 34 S+ 0 0 31 0, 0.0 12,-0.1 0, 0.0 4,-0.1 -0.461 101.3 16.2 -65.7 120.2 1.1 -8.0 -4.0 13 13 A Y T 34 S+ 0 0 229 2,-0.3 3,-0.1 -2,-0.3 11,-0.1 0.681 126.1 59.1 89.6 20.9 -0.5 -11.4 -4.7 14 14 A Y T <4 S+ 0 0 191 -3,-1.5 2,-0.2 1,-0.6 9,-0.0 0.393 101.7 16.3-137.2 -77.9 -3.5 -10.6 -2.5 15 15 A L < - 0 0 69 -4,-1.1 -1,-0.6 8,-0.1 -2,-0.3 -0.595 62.2-143.6-105.0 168.4 -5.7 -7.5 -3.3 16 16 A D - 0 0 83 -14,-0.5 2,-0.1 -2,-0.2 6,-0.1 -0.913 15.0-116.9-131.1 157.5 -6.0 -5.4 -6.4 17 17 A c - 0 0 8 -2,-0.3 -12,-0.2 -14,-0.2 6,-0.1 -0.422 27.5-111.5 -89.7 167.1 -6.5 -1.7 -7.1 18 18 A a S S- 0 0 46 -14,-1.9 -13,-0.1 -2,-0.1 -1,-0.1 0.962 73.7 -16.9 -59.6 -91.1 -9.5 -0.0 -8.9 19 19 A E S S- 0 0 159 -15,-0.2 -1,-0.1 1,-0.1 -13,-0.1 -0.785 117.7 -11.8 170.7 145.3 -8.2 1.4 -12.2 20 20 A P S S+ 0 0 99 0, 0.0 -1,-0.1 0, 0.0 -3,-0.1 -0.944 110.8 93.5 -84.2 17.8 -6.1 2.2 -13.9 21 21 A L - 0 0 42 14,-0.2 2,-0.4 -17,-0.1 14,-0.4 0.007 68.0-134.1 -57.8 170.0 -4.1 1.9 -10.7 22 22 A E - 0 0 96 -3,-0.1 2,-1.9 -6,-0.1 12,-1.5 -0.939 9.7-132.8-136.8 112.8 -2.2 -1.3 -9.8 23 23 A b E S+B 33 0A 15 -2,-0.4 -10,-0.3 10,-0.2 10,-0.2 -0.409 71.3 96.0 -64.3 84.6 -2.3 -2.9 -6.4 24 24 A K E S-B 32 0A 79 -2,-1.9 8,-1.6 8,-1.6 2,-0.3 -0.757 81.0 -35.0-150.7-163.6 1.4 -3.4 -6.0 25 25 A K E -B 31 0A 97 6,-0.3 6,-0.3 -2,-0.2 -14,-0.0 -0.507 38.4-170.1 -70.7 128.6 4.7 -1.9 -4.6 26 26 A V S S- 0 0 46 4,-2.0 5,-0.2 -2,-0.3 -1,-0.2 0.696 76.7 -14.4 -89.3 -23.1 4.7 1.9 -4.8 27 27 A N S S- 0 0 68 3,-1.4 -2,-0.1 5,-0.0 4,-0.0 -0.090 100.4 -63.5-140.7-118.2 8.4 2.0 -3.8 28 28 A W S S+ 0 0 208 -2,-0.1 3,-0.1 3,-0.0 -3,-0.0 0.490 126.6 10.2-123.4 -16.2 10.8 -0.6 -2.3 29 29 A W S S+ 0 0 180 1,-0.2 2,-0.5 0, 0.0 -4,-0.0 0.540 112.7 76.3-133.7 -33.4 9.1 -1.2 1.0 30 30 A D - 0 0 41 -21,-0.0 -4,-2.0 -5,-0.0 -3,-1.4 -0.770 62.3-160.2 -91.7 124.4 5.7 0.5 0.9 31 31 A H E + B 0 25A 46 -2,-0.5 -21,-1.6 -6,-0.3 -6,-0.3 -0.910 32.6 123.2-108.1 122.9 3.1 -1.3 -1.1 32 32 A K E -AB 9 24A 35 -8,-1.6 -8,-1.6 -2,-0.5 2,-0.5 -0.535 61.2 -46.0-145.9-148.0 0.0 0.7 -2.3 33 33 A c E + B 0 23A 3 -25,-1.0 -26,-1.0 -28,-0.3 -10,-0.2 -0.871 57.6 152.2-104.2 129.7 -1.9 1.6 -5.5 34 34 A I 0 0 40 -12,-1.5 -11,-0.1 -2,-0.5 -8,-0.1 -0.092 360.0 360.0-124.3-136.9 -0.0 2.7 -8.6 35 35 A G 0 0 99 -14,-0.4 -14,-0.2 -13,-0.1 -2,-0.0 -0.353 360.0 360.0 177.7 360.0 -0.7 2.6 -12.3